TrainingTesseract3 - tesseract-ocr - How to use the tools provided to tra...

O tesseract-ocr

An OCR Engine that was developed at HP Labs between 1985 and 1995... and now at Google.

Project Home Downloads | Wiki | Issues Source Export to GItHUb

https://code.google.com/p/tesseract-ocr/wiki/TrainingTesseract3

My favorites v | Sign in

Search projects

1 von 14

READ-ONLY: This project has been archived. For more information see this post.
search CUrrent pages v

for Search

TrainingTesseract3
How to use the tools provided to train Tesseract3 for a new language.
Featured

Introduction

Tesseract 3.0x is fully trainable. This page describes the training process, provides some guidelines on applicability to various languages, and what
to expect from the results.

For training Tesseract 2.0x see TrainingTesseract.

Background and Limitations

Tesseract was originally designed to recognize English text only. Efforts have been made to modify the engine and its training system to make them
able to deal with other languages and UTF-8 characters. Tesseract 3.0 can handle any Unicode characters (coded with UTF-8), but there are limits
as to the range of languages that it will be successful with, so please take this section into account before building up your hopes that it will work well
on your particular language!

Tesseract 3.01 added top-to-bottom languages, and Tesseract 3.02 added Hebrew (right-to-left). Tesseract currently handles scripts like Arabic with
an auxiliary engine called cube (included in Tesseract 3.0+)

Tesseract is slower with large character set languages (like Chinese), but it seems to work OK.

Tesseract needs to know about different shapes of the same character by having different fonts separated explicitly. This used to be limited to 32
fonts, but the limit has been raised to 64. It is set by the constant MAX_NUM_CONFIGS defined in intproto.h. Note that runtime is heavily dependent
on the number of fonts provided, and training more than 32 will result in a significant slow-down.

Any language that has different punctuation and numbers is going to be disadvantaged by some of the hard-coded algorithms that assume ASCII
punctuation and digits. To be fixed in 3.0x for x>=2.

You need to run all commands in the same folder where are located your input files.

Updated Oct 7, 2014 by theraysm...@gmail.com

29.12.201511:07

TrainingTesseract3 - tesseract-ocr - How to use the tools provided to tra...

Additional Libraries required

Beginning with 3.03, additional libraries are required to build the training tools.

sudo apt-get install libicu-dev
sudo apt-get install libpangol.0Q-dev
sudo apt-get install libcairo2-dev

Building the training tools

https://code.google.com/p/tesseract-ocr/wiki/TrainingTesseract3

Beginning with 3.03, if you're compiling Tesseract from source you need to make and install the training tools with separate make commands. Once

the above additional libraries have been installed, run the following from the tesseract source directory:

make training
sudo make training-install

Data files required

To train for another language, you have to create some data files in the tessdata subdirectory, and then crunch these together into a single file,
using combine_tessdata. The naming convention is languagecode. file name Language codes for released files follow the 1ISO 639-3 standard,

but any string can be used. The files used for English (3.00) are:

tessdata/eng.
tessdata/eng.
tessdata/eng.
tessdata/eng.
tessdata/eng.
tessdata/eng.
tessdata/eng.
tessdata/eng.
tessdata/eng.
.freq-dawg

tessdata/eng

config
unicharset
unicharambigs
inttemp
pffmtable
normproto
punc-dawg
word-dawg
number-dawg

... and the final crunched file is:

» tessdata/eng.traineddata

and

e tessdata/eng.user-words

2von 14

29.12.201511:07

TrainingTesseract3 - tesseract-ocr - How to use the tools provided to tra...

3von 14

may still be provided separately.

The traineddata file is simply a concatenation of the input files, with a table of contents that contains the offsets of the known file types. See
ccutilitessdatamanager.h in the source code for a list of the currently accepted filenames. NOTE the files in the traineddata file are different from the
list used prior to 3.00, and will most likely change, possibly dramatically in future revisions.

Requirements for text input files
Text input files (lang.config, lang.unicharambigs, font_properties, box files, wordlists for dictionaries...) need to meet these criteria:

e ASCII or UTF-8 encoding without BOM

o Unix end-of-line marker (\n")

e The last character must be an end of line marker (\n'). Some text editors will show this as an empty line at the end of file. If you omit this you will
get an error message containing "last_char == "\n".Error:Assert failed..."

How little can you get away with?

You must create unicharset, inttemp, normproto, pfftable using the procedure described below. If you are only trying to recognize a limited range of
fonts (like a single font for instance), then a single training page might be enough. The other files no longer need to be provided, but will most likely
improve accuracy, depending on your application. The old DangAmbigs has been replaced by unicharambigs.

Training Procedure

Some of the procedure is inevitably manual. As much automated help as possible is provided. More automated tools may appear in the future, but
will require a complex install/build process. The tools referenced below are all built in the training subdirectory.

Generate Training Images

The first step is to determine the full character set to be used, and prepare a text or word processor file containing a set of examples. The most
important points to bear in mind when creating a training file are:

* Make sure there are a minimum number of samples of each character. 10 is good, but 5 is OK for rare characters.
e There should be more samples of the more frequent characters - at least 20.

« Don't make the mistake of grouping all the non-letters together. Make the text more realistic. For example, The quick brown fox jumps over
the lazy dog. 0123456789 |@#$%"&(),.{}<>I? is terrible. Much better is The (quick) brown {fox} jumps! over the $3,456.78 <lazy> #90 dog
& duck/goose, as 12.5% of E-mail from aspammer@website.com is spam? This gives the textline finding code a much better chance of
getting sensible baseline metrics for the special characters.

NEW Automated method

Prepare a utf-8 text file (training text.txt) containing your training text according to the above specification. Obtain truetype/opentype font files
for the fonts that you wish to recognize. Run the following command for each font in turn to create a matching tif/box file pair.

training/text2image --text=training text.txt --outputbase=[lang].[fontname].exp® --font='Font Name' --fonts dir=/path/to/

https://code.google.com/p/tesseract-ocr/wiki/TrainingTesseract3

29.12.201511:07

TrainingTesseract3 - tesseract-ocr - How to use the tools provided to tra...

4 von 14

Note that the argument to --font may contain spaces, and thus must be quoted. Eg:

training/text2image --text=training text.txt --outputbase=eng.TimesNewRomanBold.exp® --font='Times New Roman Bold' --font

There are a lot of other command-line arguments available to text2image. See training/text2image.cpp for more information.

If you can use text2image for your application, great! Now skip to Run Tesseract For Training below.
Old Manual method

o |t is sometimes important to space out the text a bit when printing, so up the inter-character and inter-line spacing in your word processor. Not
spacing text out sufficiently will cause "FAILURE! box overlaps no blobs or blobs in multiple rows" errors during tr file generation, which leads to
FATALITY - 0 labelled samples of "x", which leads to "Error: X classes in inttemp while unicharset contains Y unichars" and you can't use your
nice new data files. This situation will improve in the future, as we are working on a solution, but for 3.00 APPLY_BOXES errors remain the most
problematic difficulty for people training tesseract.

The training data should be grouped by font. Ideally, all samples of a single font should go in a single tiff file, but this may be multi-page tiff (if you

have libtiff or leptonica installed), so the total training data in a single font may be many pages and many 10s of thousands of characters,

allowing training for large-character-set languages.

There is no need to train with multiple sizes. 10 point will do. (An exception to this is very small text. If you want to recognize text with an x-height

smaller than about 15 pixels, you should either train it specifically or scale your images before trying to recognize them.)

DO NOT MIX FONTS IN AN IMAGE FILE (In a single .tr file to be precise.) This will cause features to be dropped at clustering, which leads to
recognition errors.

o The example boxitiff files on the downloads page will help if you are not sure how to format your training data.

Next print and scan (or use some electronic rendering method) to create an image of your training page. Up to 64 training files can be used (of
multiple pages). It is best to create a mix of fonts and styles (but in separate files), including italic and bold.

NOTE: training from real images is actually quite hard, due to the spacing-out requirements. This will be improved in a future release. For now it is
much easier if you can print/scan your own training text.

You will also need to save your training text as a UTF-8 text file for use in the next step where you have to insert the codes into another file.

Clarification for large amounts of training data The 64 images limit is for the number of FONTS. Each font should be put in a single multi-page tiff
and the box file can be modified to specify the page number for each character after the coordinates. Thus an arbitrarily large amount of training data
may be created for any given font, allowing training for large character-set languages. An alternative to multi-page tiffs is to create many single-page

tiffs for a single font, and then you must cat together the tr files for each font into several single-font tr files. In any case, the input tr files to mftraining

must each contain a single font.

Make Box Files

For the next step below, Tesseract needs a 'box’ file to go with each training image. The box file is a text file that lists the characters in the training
image, in order, one per line, with the coordinates of the bounding box around the image. Tesseract 3.0 has a mode in which it will output a text file of
the required format, but if the character set is different to its current training, it will naturally have the text incorrect. So the key process here is to
manually edit the file to put the correct characters in it.

Run Tesseract on each of your training images using this command line:

https://code.google.com/p/tesseract-ocr/wiki/TrainingTesseract3

29.12.201511:07

TrainingTesseract3 - tesseract-ocr - How to use the tools provided to tra...

5von 14

tesseract [lang].[fontname].exp[num].tif [lang].[fontname].exp[num] batch.nochop makebox

e.g.
tesseract eng.timesitalic.exp0.tif eng.timesitalic.exp® batch.nochop makebox

Now the hard part. You have to edit the file [lang] . [fontname].exp[num].box and put the UTF-8 codes for each character in the file at the
start of each line, in place of the incorrect character put there by Tesseract. Example: The distribution includes an image eurotext.tif. Running the
above command produces a text file that includes the following lines (lines 141-154):

734 494 751 519
753 486 776 518
779 494 796 518
799 494 810 527
814 494 837 518
839 485 862 518
865 492 878 521
101 453 122 484
126 453 146 486
149 452 168 477
172 453 187 476
211 451 232 484
236 451 255 475
259 452 281 475

SDh QoS MDoC+Q SH ST W
[cNoNoNoNoNoNoNoNoNoNoNoNoNo)

Since Tesseract was run in English mode, it does not correctly recognize the umlaut. This character needs to be corrected using a suitable editor. An
editor that understands UTF-8 should be used for this purpose. HTML editors are usually a good choice. (Mozilla on linux allows you to edit utf8 text
files directly from the browser. Firefox and IE do not let you do this. MS Word is very good at handling different text encodings, and Notepad++ is
another editor that understands UTF-8.) Linux and Windows both have a character map that can be used for copying characters that cannot be
typed. In this case the u needs to be changed to 0.

In theory, each line in the box file should represent one of the characters from your training file, but if you have a horizontally broken character, such
as the lower double quote ,, it will probably have 2 boxes that need to be merged!

Example: lines 116-129:

D 101 504 131 535
e 135 502 154 528
r 158 503 173 526
197 498 206 510
206 497 214 509
220 501 236 526
239 501 258 525

[cNoNoNoNoNRoNO]

own-~ ~

https://code.google.com/p/tesseract-ocr/wiki/TrainingTesseract3

29.12.201511:07

TrainingTesseract3 - tesseract-ocr - How to use the tools provided to tra...

6 von 14

262
288
313
336
352
367
389

SO ~—~M® > =T

502
501
500
501
500
499
520

284
310
332
347
363
386
407

534
525
524
534
532
524
532

[cNoNoNoNoNoNG]

https://code.google.com/p/tesseract-ocr/wiki/TrainingTesseract3

As you can see, the low double quote character has been expressed as two single commas. The bounding boxes must be merged as follows:

o First number (left) take the minimum of the two lines (197)

e Second number (bottom) take the minimum of the two lines (497)
e Third number (right) take the maximum of the two lines (214)

e Fourth number (top) take the maximum of the two lines (510)

This gives:

101
135
158
197
220
239
262
288
313
336
352
367
389

S5 M O

SO ~~®M® 35 50 0=

504
502
503
497
501
501
502
501
500
501
500
499
520

131
154
173
214
236
258
284
310
332
347
363
386
407

535
528
526
510
526
525
534
525
524
534
532
524
532

[cNoNoNoNoNoNoNoNoNoNoNoNo]

If you didn't successfully space out the characters on the training image, some may have been joined into a single box. In this case, you can either
remake the images with better spacing and start again, or if the pair is common, put both characters at the start of the line, leaving the bounding box
to represent them both. (As of 3.00, there is a limit of 24 bytes for the description of a "character". This will allow you between 6 and 24 unicodes to
describe the character, depending on where your codes sit in the unicode set. If anyone hits this limit, please file an issue describing your situation.)

Note that the coordinate system used in the box file has (0,0) at the bottom-left.
The last number on each line is the page number (0-based) of that character in the multi-page tiff file.

There are several visual tools for editing box file - please check AddOns wiki.

Bootstrapping a new character set

If you are trying to train a new character set, it is a good idea to put in the effort on a single font to get one good box file, run the rest of the training

29.12.201511:07

TrainingTesseract3 - tesseract-ocr - How to use the tools provided to tra... https://code.google.com/p/tesseract-ocr/wiki/TrainingTesseract3

process, and then use Tesseract in your new language to make the rest of the box files as follows:
tesseract [lang].[fontname].exp[num].tif [lang].[fontname].exp[num] -1 yournewlanguage batch.nochop makebox

This should make the 2nd box file easier to make, as there is a good chance that Tesseract will recognize most of the text correctly. You can always
iterate this sequence adding more fonts to he training set (i.e. to the command line of mfTraining and cnTraining below) as you make them, but note
that there is no incremental training mode that allows you to add new training data to existing sets. This means that each time you run mfTraining and
cnTraining you are making new data files from scratch from the tr files you give on the command line, and these programs cannot take an existing
intproto/pffmtable/normproto and add to them directly.

TifIBox pairs provided!

Some Tif/Box file pairs are on the downloads page. (Note the tiff files are G4 compressed to save space, so you will have to have libtiff or
uncompress them first). You could follow the following process to make better training data for your own language or subset of an existing language,
or add different characters/shapes to an existing language:

1. Filter the box files, keeping lines for only the characters you want.
2. Run tesseract for training (below).

3. Cat the .tr files from multiple languages for each font to get the character set that you want and add the .tr files from your own fonts or
characters.

4. Cat the filtered box files in an identical way to the .tr files for handing off to unicharset_extractor.

5. Run the rest of the training process.
Caution! This is not quite as simple as it sounds! cntraining and mftraining can only take up to 64 .tr files, so you must cat all the files from multiple languages for the same font together to make 64
language-combined, but font-individual files. The characters found in the tr files must match the sequence of characters found in the box files when given to unicharset_extractor, so you have to
cat the box files together in the same order as the tr files. The command lines for cn/mftraining and unicharset_extractor must be given the .tr and .box files (respectively) in the same order just in

case you have different filtering for the different fonts. There may be a program available to do all this and pick out the characters in the style of character map. This might make the whole thing
easier.

Run Tesseract for Training

For each of your training image, boxfile pairs, run Tesseract in training mode:

tesseract [lang].[fontname].exp[num].tif [lang].[fontname].exp[num] box.train

or

tesseract [lang].[fontname].exp[num].tif [lang].[fontname].exp[num] box.train.stderr

NOTE that although tesseract requires language data to be present for this step, the language data is not used, so English will do, whatever
language you are training.

The first form sends all the errors to tesseract.log (on all platforms) like it did on windows versions 2.03 and below. With box.train.stderr, all errors are
sent to stderr, on all platforms, just like it did on non-windows platforms for versions 2.03 and below.

7 von 14 29.12.201511:07

TrainingTesseract3 - tesseract-ocr - How to use the tools provided to tra... https://code.google.com/p/tesseract-ocr/wiki/TrainingTesseract3

Note that the box filename must match the tif filename, including the path, or Tesseract won't find it. The output of this step is fontfile.tr which
contains the features of each character of the training page. [lang]. [fontname].exp[num] . txt will also be written with a single newline and no
text.

Important Check for errors in the output from apply_box. If there are FATALITIES reported, then there is no point continuing with the training process
until you fix the box file. The new box.train.stderr config file makes is easier to choose the location of the output. A FATALITY usually indicates that
this step failed to find any training samples of one of the characters listed in your box file. Either the coordinates are wrong, or there is something
wrong with the image of the character concerned. If there is no workable sample of a character, it can't be recognized, and the generated inttemp file
won't match the unicharset file later and Tesseract will abort.

Another error that can occur that is also fatal and needs attention is an error about "Box file format error on line n". If preceded by "Bad utf-8
char..." then the utf-8 codes are incorrect and need to be fixed. The error "utf-8 string too long..." indicates that you have exceeded the 24 byte limit
on a character description. If you need a description longer than 24 bytes, please file an issue.

There is no need to edit the content of the [lang] . [fontname].exp[num] . tr file. The font name inside it need not be set. For the curious, here
is some information on the format:

Every character in the box file has a corresponding set of entries in
the .tr file (in order) like this
UnknownFont <utf8 code(s)> 2
mf <number of features>
x y length dir 0 0
(there are a set of these determined by <number of features>
above)
cn 1
ypos length x2ndmoment y2ndmoment

The mf features are polygon segments of the outline normalized to the
1st and 2nd moments.

X= X position [-0.5.0.5]

y =y position [-0.25, 0.75]

length is the length of the polygon segment [0,1.0]

dir is the direction of the segment [0,1.0]

The cn feature is to correct for the moment normalization to
distinguish position and size (eg c vs C and , vs ')

Compute the Character Set

Tesseract needs to know the set of possible characters it can output. To generate the unicharset data file, use the unicharset _extractor
program on the box files generated above:

unicharset extractor lang.fontname.exp@.box lang.fontname.expl.box ...

8 von 14 29.12.201511:07

TrainingTesseract3 - tesseract-ocr - How to use the tools provided to tra...

9von 14

Tesseract needs to have access to character properties isalpha, isdigit, isupper, islower, ispunctuation. This data must be encoded in the
unicharset data file. Each line of this file corresponds to one character. The character in UTF-8 is followed by a hexadecimal number representing
a binary mask that encodes the properties. Each bit corresponds to a property. If the bit is set to 1, it means that the property is true. The bit ordering
is (from least significant bit to most significant bit): isalpha, islower, isupper, isdigit.

Example:

¢ ';'is an punctuation character. Its properties are thus represented by the binary number 10000 (10 in hexadecimal).

« 'b'is an alphabetic character and a lower case character. Its properties are thus represented by the binary number 00011 (3 in hexadecimal).

« 'W'is an alphabetic character and an upper case character. Its properties are thus represented by the binary number 00101 (5 in hexadecimal).
e '7'is just a digit. Its properties are thus represented by the binary number 01000 (8 in hexadecimal).

¢ '=' does is not punctuation not digit or alphabetic character. Its properties are thus represented by the binary number 00000 (0 in hexadecimal).

10 Common 46
3 Latin 59
5 Latin 40
8 Common 66
0 Common 93

I N=oT ~-

Japanese or Chinese alphabetic character properties are represented by the binary number 00001 (1 in hexadecimal).

If your system supports the wctype functions, these values will be set automatically by unicharset_extractor and there is no need to edit the
unicharset file. On some older systems (eg Windows 95), the unicharset file must be edited by hand to add these property description codes.

NOTE The unicharset file must be regenerated whenever inttemp, normproto and pffmtable are generated (i.e. they must all be recreated when the
box file is changed) as they have to be in sync. This is made easier than in previous versions by running unicharset_extractor before mftraining and
cntraining, and giving the unicharset to mftraining.

Last two columns represent type of script (Latin, Common, Greek, Cyrillic, Han, null) and id code of character given language.

set_unicharset_properties (new in 3.03)

A new tool and set of data files in 3.03 allow the addition of extra properties in the unicharset, mostly sizes obtained from fonts.

training/set _unicharset properties -U input unicharset -0 output unicharset --script dir=training/langdata

font_properties (new in 3.01)

A new requirement for training in 3.01 is a font_properties file. The purpose of this file is to provide font style information that will appear in the
output when the font is recognized. The font_properties file is a text file specified by the -F filename option to mftraining.

Each line of the font_properties file is formatted as follows:

<fontname> <italic> <bold> <fixed> <serif> <fraktur>

https://code.google.com/p/tesseract-ocr/wiki/TrainingTesseract3

29.12.201511:07

TrainingTesseract3 - tesseract-ocr - How to use the tools provided to tra...

10 von 14

where <fontname> is a string naming the font (no spaces allowed!), and <italic>, <bold>, <fixed>, <serif> and <fraktur> are all
simple 0 or 1 flags indicating whether the font has the named property.

When running mftraining, each .tr filename must match an entry in the font_properties file, or mftraining will abort. At some point, possibly before the
release of 3.01, this matching requirement is likely to shift to the font name in the .tr file itself. The name of the .tr file may be either fontname.tr or
[lang].[fontname].exp[num].tr.

Example:
font_properties file:

timesitalic 1 0 0 1 0

shapeclustering -F font properties -U unicharset eng.timesitalic.exp0.tr
mftraining -F font properties -U unicharset -0 eng.unicharset eng.timesitalic.exp0.tr

Note that in 3.03, there is a default font_properties file, that covers 3000 fonts (not necessarily accurately) in training/langdata
/font _properties.

Clustering

When the character features of all the training pages have been extracted, we need to cluster them to create the prototypes. The character shape
features can be clustered using the shapeclustering (available from 3.02 version), mftraining and cntraining programs:

shapeclustering -F font properties -U unicharset lang.fontname.exp0.tr lang.fontname.expl.tr ...

shapeclustering creates a master shape table by shape clustering and writes it to a file - shapetable. shapeclustering currently should not be used
except for the Indic languages.

NOTE: mftraining will produce a shapetable if you didn't run shapeclustering. You must include this shapetable in your traineddata file, whether or
not shapeclustering was used.

mftraining -F font properties -U unicharset -0 lang.unicharset lang.fontname.exp0.tr lang.fontname.expl.tr ...

The -U file is the unicharset generated by unicharset_extractor above, and lang.unicharset is the output unicharset that will be given to
combine_tessdata. Mftraining will output two other data files: inttemp (the shape prototypes) and pffmtable (the number of expected features for
each character). (A third file called Microfeat is also written by this program, but it is not used.)

cntraining lang.fontname.exp@.tr lang.fontname.expl.tr ...

This will output the normproto data file (the character normalization sensitivity prototypes).

Dictionary Data (Optional)

https://code.google.com/p/tesseract-ocr/wiki/TrainingTesseract3

29.12.201511:07

TrainingTesseract3 - tesseract-ocr - How to use the tools provided to tra...

11 von 14

Tesseract uses up to 8 dictionary files for each language. These are all optional, and help Tesseract to decide the likelihood of different possible

character combinations.

Seven of the files are coded as a Directed Acyclic Word Graph (DAWG), and the other is a plain UTF-8 text file:

https://code.google.com/p/tesseract-ocr/wiki/TrainingTesseract3

To make the DAWG dictionary files, you first need a wordlist for your language. You may find an appropriate dictionary file to use as the basis for a wordlist from the spellcheckers (e. g. ispell,
aspell or hunspell) - be careful about the license. The wordlist is formatted as a UTF-8 text file with one word per line. Split the wordlist into needed sets e.g.: the frequent words, and the rest of the
words, and then use wordlist2dawg to make the DAWG files:

Name Type
word-dawg dawg
freg-dawg dawg
punc-dawg dawg
number-dawg dawg

fixed-length-dawgs = dawg

bigram-dawg dawg
unambig-dawg dawg
user-words text

Description

A dawg made from dictionary words from the language.

A dawg made from the most frequent words which would have gone into word-dawg.

A dawg made from punctuation patterns found around words. The "word" part is replaced by a single space.
A dawg made from tokens which originally contained digits. Each digit is replaced by a space character.
Several dawgs of different fixed lengths —— useful for languages like Chinese.

A dawg of word bigrams where the words are separated by a space and each digit is replaced by a ?.

TODO: Describe.

A list of extra words to add to the dictionary. Usually left empty to be added by users if they require it; see tesseract(1).

wordlist2dawg frequent words list lang.freq-dawg lang.unicharset
wordlist2dawg words list lang.word-dawg lang.unicharset

For right-to-left languages (RTL) use option "“-r 1". Other options can be found in wordlist2dawg Manual Page

NOTE: If a dictionary file is included in the combined traineddata, it must contain at least one entry. Dictionary files that would otherwise be empty are
not required for the combine_tessdata step. Words with unusual spellings should be added to the dictionary files. Unusual spellings can include
mixtures of alphabetical characters with punctuation or numeric characters. (E.g. i18n, 110n, google.com, news.bbc.co.uk, i09.com, utf8, ucs2)

If you need example files for dictionary wordlists, uncombine (with combine tessdata) existing language data file (e.g. eng.traineddata) and then
extract wordlist with dawg2wordlist

The last file (unicharambigs)

The final data file that Tesseract uses is called unicharambigs. It describes possible ambiguities between characters or sets of characters, and is
manually generated. To understand the file format, look at the following example:

vl
2 vt 1

29.12.201511:07

TrainingTesseract3 - tesseract-ocr - How to use the tools provided to tra... https://code.google.com/p/tesseract-ocr/wiki/TrainingTesseract3

1 m 2 rn 0
3 iii 1 m 0
The first line is a version identifier. The remaining lines are tab separated fields, in the following format: <number of characters for match source>
<tab>
<characters for match source>
<tab>
<number of characters for match target>
<tab>
<characters for match target>
<tab>
<type indicator>

Type indicator could have following values:

Value Type Description
A non-mandatory substitution. This informs tesseract to consider the ambiguity as a hint to the segmentation search that it should continue working if replacement of

0 'source’ with 'target' creates a dictionary word from a non-dictionary word. Dictionary words that can be turned to another dictionary word via the ambiguity will not be
used to train the adaptive classifier.

1 A mandatory substitution. This informs tesseract to always replace the matched 'source’ with the 'target' strings.

Example line Explanation

2''1"1 A double quote (") should be substituted whenever 2 consecutive single quotes (') are seen.
Im2rn0 The characters 'rn' may sometimes be recognized incorrectly as 'm'.
3iiilmoO The character 'm' may sometimes be recognized incorrectly as the sequence 'iii".

Each separate character must be included in the unicharset. That is, all of the characters used must be part of the language that is being trained.
The rules are not bidirectional, so if you want 'rn' to be considered when 'm' is detected and vise versa you need a rule for each.

Version 3.03 and on supports a new, simpler format for the unicharambigs file:

v2

12 von 14 29.12.201511:07

TrainingTesseract3 - tesseract-ocr - How to use the tools provided to tra... https://code.google.com/p/tesseract-ocr/wiki/TrainingTesseract3

g
mrn 0
iiimo

In this format, the "error" and "correction” are simple utf-8 strings separated by a space, and, after another space, the same type specifier as v1 (0 for
optional and 1 for mandatory substitution). Note the downside of this simpler format is that Tesseract has to encode the utf-8 strings into the
components of the unicharset. In complex scripts, this encoding may be ambiguous. In this case, the encoding is chosen such as to use the least
utf-8 characters for each component, ie the shortest unicharset components will make up the encoding.

Like most other files used in training, the ‘unicharambigs' file must be encoded as UTF8, and must end with a newline character. The unicharambigs

format is also described in the unicharambigs(5) man page.

The unicharambigs file may also be non-existent.

Putting it all together

That is all there is to it! All you need to do now is collect together all (shapetable, normproto, inttemp, pffmtable) the files and rename them with a

lang. prefix, where lang is the 3-letter code for your language taken from http://en.wikipedia.org/wiki/List_of ISO_639-2_codes and then run
combine_tessdata on them as follows:

combine tessdata lang.

NOTE: Don't forget dot at the end!

The resulting lang.traineddata goes in your tessdata directory. Tesseract can then recognize text in your language (in theory) with the following:
tesseract image.tif output -1 lang

(Actually, you can use any string you like for the language code, but if you want anybody else to be able to use it easily, ISO 639 is the way to go.)

More options of combine_tessdata can be found on its Manual Page or in comment of its source code.

Comment by shreeshrii, Aug 17, 2014

Look at https://code.google.com/p/tesseract-ocr/source/browse/training/tesstrain.sh?spec=svne249d7bcb2d0ed730dd9fbffe5cd228e18a27f00&
r=e249d7bcb2d0ed730dd9fbffe5cd228e18a27f00

for new training procedure.

Comment by gautamr...@strose.edu, Jun 29, 2015

13 von 14 29.12.201511:07

TrainingTesseract3 - tesseract-ocr - How to use the tools provided to tra... https://code.google.com/p/tesseract-ocr/wiki/TrainingTesseract3

is it possible to list the syntax for converting a pdf file into text file Do i have to convert pdf file into image file first

Comment by tfmorris, Jul 24, 2015

This wiki is obsolete. The current link for the information on this page is: https://github.com/tesseract-ocr/tesseract/wiki/TrainingTesseract

Terms - Privacy - Project Hosting Help

Powered by Google Project Hosting

14 von 14 29.12.201511:07

