Second Edition

Structure and
Interpretation
of Computer
Programs

This file was created using the html files available from the
MIT Press SICP website (http://mitpress.mit.edu/sicp/)

That work and this file are licensed under a Creative
Commons Attribution-Noncommercial 3.0 Unported
License. (see http://creativecommons.org/licenses/by-

nc/3.0/)
‘@ ® & \

File version: 1.0
Rel eased: 20080705

This book is one of a series of texts written by faculty
of the Electrical Engineering and Computer Science
Department at the Massachusetts Institute of Technology.
It was edited and produced by The MIT Press under
a joint production-distribution arrangement with the
McGraw-Hill Book Company. Ordering Information:
North America Text orders should be addressed to the
McGraw-Hill Book Company. All other orders should be
addressed to The MIT Press. Outside North America All
orders should be addressed to The MIT Press or its local
distributor. © 1996 by The Massachusetts Institute of
Technology Second edition All rights reserved. No part
of this book may be reproduced in any form or by any
electronic or mechanical means (including photocopying,
recording, or information storage and retrieval) without
permission in writing from the publisher. This book was
set by the authors using the LATEX typesetting system
and was printed and bound in the United States of
America. Library of Congress Cataloging-in-Publication
Data Abelson, Harold ~ Structure and interpretation
of computer programs / Harold Abelson and Gerald
Jay Sussman, with Julie Sussman. -- 2nd ed. p.
cm. -- (Electrical engineering and computer science
series) Includes bibliographical references and
index. ISBN 0-262-01153-0 (MIT Press hardcover)
ISBN 0-262-51087-1 (MIT Press paperback) ISBN

0-07-000484-6 (McGraw-Hill hardcover) 1. Electronic
digital computers -- Programming. 2. LISP (Computer
program language) |. Sussman, Gerald Jay. Il. Sussman,
Julie. lll. Title. IV. Series: MIT electrical engineering

and computer science series. QA76.6.A255 1996
005.13'3 -- dc20 96-17756 Fourth printing, 1999

This book is dedicated, in respect and admiration, to the
spirit that lives in the computer.

"l think that it's extraordinarily important that we in computer
science keep fun in computing. When it started out, it was
an awful lot of fun. Of course, the paying customers got
shafted every now and then, and after a while we began to
take their complaints seriously. We began to feel as if we
really were responsible for the successful, error-free perfect
use of these machines. | don't think we are. | think we're
responsible for stretching them, setting them off in new
directions, and keeping fun in the house. | hope the field
of computer science never loses its sense of fun. Above
all, 1 hope we don't become missionaries. Don't feel as if
you're Bible salesmen. The world has too many of those
already. What you know about computing other people will
learn. Don't feel as if the key to successful computing is
only in your hands. What's in your hands, | think and hope,
is intelligence: the ability to see the machine as more than
when you were first led up to it, that you can make it more."

Alan J. Perlis (April 1, 1922-February 7, 1990)

Foreword

Educators, generals, dieticians, psychologists, and parents
program. Armies, students, and some societies are
programmed. An assault on large problems employs
a succession of programs, most of which spring into
existence en route. These programs are rife with issues
that appear to be particular to the problem at hand.
To appreciate programming as an intellectual activity in
its own right you must turn to computer programming;
you must read and write computer programs -- many
of them. It doesn't matter much what the programs are
about or what applications they serve. What does matter
is how well they perform and how smoothly they fit with
other programs in the creation of still greater programs.
The programmer must seek both perfection of part and
adequacy of collection. In this book the use of "program" is
focused on the creation, execution, and study of programs
written in a dialect of Lisp for execution on a digital
computer. Using Lisp we restrict or limit not what we may
program, but only the notation for our program descriptions.

Our traffic with the subject matter of this book involves us
with three foci of phenomena: the human mind, collections
of computer programs, and the computer. Every computer
program is a model, hatched in the mind, of a real or mental

process. These processes, arising from human experience
and thought, are huge in number, intricate in detail, and at
any time only partially understood. They are modeled to our
permanent satisfaction rarely by our computer programs.
Thus even though our programs are carefully handcrafted
discrete collections of symbols, mosaics of interlocking
functions, they continually evolve: we change them as our
perception of the model deepens, enlarges, generalizes
until the model ultimately attains a metastable place within
still another model with which we struggle. The source of
the exhilaration associated with computer programming is
the continual unfolding within the mind and on the computer
of mechanisms expressed as programs and the explosion
of perception they generate. If art interprets our dreams,
the computer executes them in the guise of programs!

For all its power, the computer is a harsh taskmaster.
Its programs must be correct, and what we wish to
say must be said accurately in every detail. As in
every other symbolic activity, we become convinced
of program truth through argument. Lisp itself can be
assigned a semantics (another model, by the way),
and if a program's function can be specified, say, in
the predicate calculus, the proof methods of logic can
be used to make an acceptable correctness argument.
Unfortunately, as programs get large and complicated,
as they almost always do, the adequacy, consistency,
and correctness of the specifications themselves become
open to doubt, so that complete formal arguments of

correctness seldom accompany large programs. Since
large programs grow from small ones, it is crucial that
we develop an arsenal of standard program structures
of whose correctness we have become sure -- we call
them idioms -- and learn to combine them into larger
structures using organizational techniques of proven value.
These techniques are treated at length in this book, and
understanding them is essential to participation in the
Promethean enterprise called programming. More than
anything else, the uncovering and mastery of powerful
organizational techniques accelerates our ability to create
large, significant programs. Conversely, since writing large
programs is very taxing, we are stimulated to invent new
methods of reducing the mass of function and detail to be
fitted into large programs.

Unlike programs, computers must obey the laws of physics.
If they wish to perform rapidly -- a few nanoseconds per
state change -- they must transmit electrons only small

distances (at most 1 ‘/2 feet). The heat generated by
the huge number of devices so concentrated in space
has to be removed. An exquisite engineering art has
been developed balancing between multiplicity of function
and density of devices. In any event, hardware always
operates at a level more primitive than that at which
we care to program. The processes that transform our
Lisp programs to "machine" programs are themselves
abstract models which we program. Their study and
creation give a great deal of insight into the organizational

programs associated with programming arbitrary models.
Of course the computer itself can be so modeled. Think
of it: the behavior of the smallest physical switching
element is modeled by quantum mechanics described by
differential equations whose detailed behavior is captured
by numerical approximations represented in computer
programs executing on computers composed of . . . !

It is not merely a matter of tactical convenience to
separately identify the three foci. Even though, as they
say, it's all in the head, this logical separation induces
an acceleration of symbolic traffic between these foci
whose richness, vitality, and potential is exceeded in
human experience only by the evolution of life itself.
At best, relationships between the foci are metastable.
The computers are never large enough or fast enough.
Each breakthrough in hardware technology leads to more
massive programming enterprises, new organizational
principles, and an enrichment of abstract models. Every
reader should ask himself periodically "Toward what end,
toward what end?" -- but do not ask it too often lest you
pass up the fun of programming for the constipation of
bittersweet philosophy.

Among the programs we write, some (but never enough)
perform a precise mathematical function such as sorting
or finding the maximum of a sequence of numbers,
determining primality, or finding the square root. We call
such programs algorithms, and a great deal is known
of their optimal behavior, particularly with respect to the

two important parameters of execution time and data
storage requirements. A programmer should acquire good
algorithms and idioms. Even though some programs
resist precise specifications, it is the responsibility of the
programmer to estimate, and always to attempt to improve,
their performance.

Lisp is a survivor, having been in use for about a quarter
of a century. Among the active programming languages
only Fortran has had a longer life. Both languages
have supported the programming needs of important
areas of application, Fortran for scientific and engineering
computation and Lisp for artificial intelligence. These two
areas continue to be important, and their programmers are
so devoted to these two languages that Lisp and Fortran
may well continue in active use for at least another quarter-
century.

Lisp changes. The Scheme dialect used in this text has
evolved from the original Lisp and differs from the latter
in several important ways, including static scoping for
variable binding and permitting functions to yield functions
as values. In its semantic structure Scheme is as closely
akin to Algol 60 as to early Lisps. Algol 60, never to
be an active language again, lives on in the genes of
Scheme and Pascal. It would be difficult to find two
languages that are the communicating coin of two more
different cultures than those gathered around these two
languages. Pascal is for building pyramids -- imposing,
breathtaking, static structures built by armies pushing

heavy blocks into place. Lisp is for building organisms --
imposing, breathtaking, dynamic structures built by squads
fitting fluctuating myriads of simpler organisms into place.
The organizing principles used are the same in both
cases, except for one extraordinarily important difference:
The discretionary exportable functionality entrusted to the
individual Lisp programmer is more than an order of
magnitude greater than that to be found within Pascal
enterprises. Lisp programs inflate libraries with functions
whose utility transcends the application that produced
them. The list, Lisp's native data structure, is largely
responsible for such growth of utility. The simple structure
and natural applicability of lists are reflected in functions
that are amazingly nonidiosyncratic. In Pascal the plethora
of declarable data structures induces a specialization within
functions that inhibits and penalizes casual cooperation.
It is better to have 100 functions operate on one data
structure than to have 10 functions operate on 10 data
structures. As a result the pyramid must stand unchanged
for a millennium; the organism must evolve or perish.

To illustrate this difference, compare the treatment of
material and exercises within this book with that in any first-
course text using Pascal. Do not labor under the illusion
that this is a text digestible at MIT only, peculiar to the
breed found there. It is precisely what a serious book on
programming Lisp must be, no matter who the student is
or where it is used.

Note that this is a text about programming, unlike most Lisp
books, which are used as a preparation for work in artificial
intelligence. After all, the critical programming concerns
of software engineering and artificial intelligence tend
to coalesce as the systems under investigation become
larger. This explains why there is such growing interest in
Lisp outside of artificial intelligence.

As one would expect from its goals, artificial intelligence
research generates many significant programming
problems. In other programming cultures this spate of
problems spawns new languages. Indeed, in any very large
programming task a useful organizing principle is to control
and isolate traffic within the task modules via the invention
of language. These languages tend to become less
primitive as one approaches the boundaries of the system
where we humans interact most often. As a result, such
systems contain complex language-processing functions
replicated many times. Lisp has such a simple syntax and
semantics that parsing can be treated as an elementary
task. Thus parsing technology plays almost no role in Lisp
programs, and the construction of language processors is
rarely an impediment to the rate of growth and change
of large Lisp systems. Finally, it is this very simplicity of
syntax and semantics that is responsible for the burden and
freedom borne by all Lisp programmers. No Lisp program
of any size beyond a few lines can be written without being
saturated with discretionary functions. Invent and fit; have

fits and reinvent! We toast the Lisp programmer who pens
his thoughts within nests of parentheses.

Alan J. Perlis
New Haven, Connecticut

Preface to the Second Edition

Is it possible that software is not like anything else,
that it is meant to be discarded: that the whole
point is to always see it as a soap bubble?

Alan J. Perlis

The material in this book has been the basis of MIT's entry-
level computer science subject since 1980. We had been
teaching this material for four years when the first edition
was published, and twelve more years have elapsed until
the appearance of this second edition. We are pleased that
our work has been widely adopted and incorporated into
other texts. We have seen our students take the ideas and
programs in this book and build them in as the core of new
computer systems and languages. In literal realization of
an ancient Talmudic pun, our students have become our
builders. We are lucky to have such capable students and
such accomplished builders.

In preparing this edition, we have incorporated hundreds
of clarifications suggested by our own teaching experience
and the comments of colleagues at MIT and elsewhere. We
have redesigned most of the major programming systems
in the book, including the generic-arithmetic system,
the interpreters, the register-machine simulator, and the

compiler; and we have rewritten all the program examples
to ensure that any Scheme implementation conforming to
the IEEE Scheme standard (IEEE 1990) will be able to run
the code.

This edition emphasizes several new themes. The most
important of these is the central role played by different
approaches to dealing with time in computational models:
objects with state, concurrent programming, functional
programming, lazy evaluation, and nondeterministic
programming. We have included new sections on
concurrency and nondeterminism, and we have tried to
integrate this theme throughout the book.

The first edition of the book closely followed the syllabus of
our MIT one-semester subject. With all the new material in
the second edition, it will not be possible to cover everything
in a single semester, so the instructor will have to pick
and choose. In our own teaching, we sometimes skip
the section on logic programming (section 4.4), we have
students use the register-machine simulator but we do not
cover its implementation (section 5.2), and we give only
a cursory overview of the compiler (section 5.5). Even so,
this is still an intense course. Some instructors may wish to
cover only the first three or four chapters, leaving the other
material for subsequent courses.

The World-Wide-Web site ww«nitpress. nit. edu/sicp
provides support for users of this book. This
includes programs from the book, sample programming

assignments, supplementary materials, and downloadable
implementations of the Scheme dialect of Lisp.

Preface to the First Edition

A computer is like a violin. You can imagine a
novice trying first a phonograph and then a violin.
The latter, he says, sounds terrible. That is the
argument we have heard from our humanists
and most of our computer scientists. Computer
programs are good, they say, for particular
purposes, but they aren't flexible. Neither is a
violin, or a typewriter, until you learn how to use it.

Marvin Minsky, "Why Programming Is a Good
Medium for Expressing Poorly-Understood and
Sloppily-Formulated Ideas"

"The Structure and Interpretation of Computer Programs”
is the entry-level subject in computer science at the
Massachusetts Institute of Technology. It is required of
all students at MIT who major in electrical engineering or
in computer science, as one-fourth of the "common core
curriculum,” which also includes two subjects on circuits
and linear systems and a subject on the design of digital
systems. We have been involved in the development of
this subject since 1978, and we have taught this material
in its present form since the fall of 1980 to between 600
and 700 students each year. Most of these students have

had little or no prior formal training in computation, although
many have played with computers a bit and a few have had
extensive programming or hardware-design experience.

Our design of this introductory computer-science subject
reflects two major concerns. First, we want to establish the
idea that a computer language is not just a way of getting a
computer to perform operations but rather that it is a novel
formal medium for expressing ideas about methodology.
Thus, programs must be written for people to read, and only
incidentally for machines to execute. Second, we believe
that the essential material to be addressed by a subject
at this level is not the syntax of particular programming-
language constructs, nor clever algorithms for computing
particular functions efficiently, nor even the mathematical
analysis of algorithms and the foundations of computing,
but rather the techniques used to control the intellectual
complexity of large software systems.

Our goal is that students who complete this subject should
have a good feel for the elements of style and the
aesthetics of programming. They should have command of
the major techniques for controlling complexity in a large
system. They should be capable of reading a 50-page-long
program, if it is written in an exemplary style. They should
know what not to read, and what they need not understand
at any moment. They should feel secure about modifying a
program, retaining the spirit and style of the original author.

These skills are by no means unique to computer
programming. The techniques we teach and draw upon
are common to all of engineering design. We control
complexity by building abstractions that hide details
when appropriate. We control complexity by establishing
conventional interfaces that enable us to construct
systems by combining standard, well-understood pieces
in a "mix and match" way. We control complexity by
establishing new languages for describing a design, each
of which emphasizes particular aspects of the design and
deemphasizes others.

Underlying our approach to this subject is our conviction
that "computer science" is not a science and that its
significance has little to do with computers. The computer
revolution is a revolution in the way we think and in the
way we express what we think. The essence of this change
is the emergence of what might best be called procedural
epistemology -- the study of the structure of knowledge
from an imperative point of view, as opposed to the more
declarative point of view taken by classical mathematical
subjects. Mathematics provides a framework for dealing
precisely with notions of "what is." Computation provides a
framework for dealing precisely with notions of "how to."

In teaching our material we use a dialect of the
programming language Lisp. We never formally teach the
language, because we don't have to. We just use i,
and students pick it up in a few days. This is one great
advantage of Lisp-like languages: They have very few ways

of forming compound expressions, and almost no syntactic
structure. All of the formal properties can be covered in an
hour, like the rules of chess. After a short time we forget
about syntactic details of the language (because there are
none) and get on with the real issues -- figuring out what
we want to compute, how we will decompose problems
into manageable parts, and how we will work on the parts.
Another advantage of Lisp is that it supports (but does
not enforce) more of the large-scale strategies for modular
decomposition of programs than any other language we
know. We can make procedural and data abstractions, we
can use higher-order functions to capture common patterns
of usage, we can model local state using assignment
and data mutation, we can link parts of a program
with streams and delayed evaluation, and we can easily
implement embedded languages. All of this is embedded
in an interactive environment with excellent support for
incremental program design, construction, testing, and
debugging. We thank all the generations of Lisp wizards,
starting with John McCarthy, who have fashioned a fine tool
of unprecedented power and elegance.

Scheme, the dialect of Lisp that we use, is an
attempt to bring together the power and elegance of
Lisp and Algol. From Lisp we take the metalinguistic
power that derives from the simple syntax, the uniform
representation of programs as data objects, and the
garbage-collected heap-allocated data. From Algol we
take lexical scoping and block structure, which are gifts

from the pioneers of programming-language design who
were on the Algol committee. We wish to cite John
Reynolds and Peter Landin for their insights into the
relationship of Church's lambda calculus to the structure
of programming languages. We also recognize our debt to
the mathematicians who scouted out this territory decades
before computers appeared on the scene. These pioneers
include Alonzo Church, Barkley Rosser, Stephen Kleene,
and Haskell Curry.

Acknowledgments

We would like to thank the many people who have helped
us develop this book and this curriculum.

Our subject is a clear intellectual descendant of "6.231,"
a wonderful subject on programming linguistics and the
lambda calculus taught at MIT in the late 1960s by Jack
Wozencraft and Arthur Evans, Jr.

We owe a great debt to Robert Fano, who reorganized
MIT's introductory curriculum in electrical engineering
and computer science to emphasize the principles of
engineering design. He led us in starting out on this
enterprise and wrote the first set of subject notes from
which this book evolved.

Much of the style and aesthetics of programming that we
try to teach were developed in conjunction with Guy Lewis
Steele Jr., who collaborated with Gerald Jay Sussman
in the initial development of the Scheme language. In
addition, David Turner, Peter Henderson, Dan Friedman,
David Wise, and Will Clinger have taught us many of the
techniques of the functional programming community that
appear in this book.

Joel Moses taught us about structuring large systems.
His experience with the Macsyma system for symbolic
computation provided the insight that one should avoid
complexities of control and concentrate on organizing the
data to reflect the real structure of the world being modeled.

Marvin Minsky and Seymour Papert formed many of our
attitudes about programming and its place in our intellectual
lives. To them we owe the understanding that computation
provides a means of expression for exploring ideas that
would otherwise be too complex to deal with precisely.
They emphasize that a student's ability to write and modify
programs provides a powerful medium in which exploring
becomes a natural activity.

We also strongly agree with Alan Perlis that programming
is lots of fun and we had better be careful to support the
joy of programming. Part of this joy derives from observing
great masters at work. We are fortunate to have been
apprentice programmers at the feet of Bill Gosper and
Richard Greenblatt.

It is difficult to identify all the people who have contributed
to the development of our curriculum. We thank all
the lecturers, recitation instructors, and tutors who have
worked with us over the past fifteen years and put in many
extra hours on our subject, especially Bill Siebert, Albert
Meyer, Joe Stoy, Randy Davis, Louis Braida, Eric Grimson,
Rod Brooks, Lynn Stein, and Peter Szolovits. We would
like to specially acknowledge the outstanding teaching

contributions of Franklyn Turbak, now at Wellesley; his
work in undergraduate instruction set a standard that we
can all aspire to. We are grateful to Jerry Saltzer and
Jim Miller for helping us grapple with the mysteries of
concurrency, and to Peter Szolovits and David McAllester
for their contributions to the exposition of nondeterministic
evaluation in chapter 4.

Many people have put in significant effort presenting this
material at other universities. Some of the people we
have worked closely with are Jacob Katzenelson at the
Technion, Hardy Mayer at the University of California at
Irvine, Joe Stoy at Oxford, Elisha Sacks at Purdue, and Jan
Komorowski at the Norwegian University of Science and
Technology. We are exceptionally proud of our colleagues
who have received major teaching awards for their
adaptations of this subject at other universities, including
Kenneth Yip at Yale, Brian Harvey at the University of
California at Berkeley, and Dan Huttenlocher at Cornell.

Al Moyé arranged for us to teach this material to engineers
at Hewlett-Packard, and for the production of videotapes
of these lectures. We would like to thank the talented
instructors -- in particular Jim Miller, Bill Siebert, and Mike
Eisenberg -- who have designed continuing education
courses incorporating these tapes and taught them at
universities and industry all over the world.

Many educators in other countries have put in significant
work translating the first edition. Michel Briand, Pierre

Chamard, and André Pic produced a French edition;
Susanne Daniels-Herold produced a German edition; and
Fumio Motoyoshi produced a Japanese edition. We do not
know who produced the Chinese edition, but we consider
it an honor to have been selected as the subject of an
"unauthorized" translation.

It is hard to enumerate all the people who have made
technical contributions to the development of the Scheme
systems we use for instructional purposes. In addition to
Guy Steele, principal wizards have included Chris Hanson,
Joe Bowbeer, Jim Miller, Guillermo Rozas, and Stephen
Adams. Others who have put in significant time are Richard
Stallman, Alan Bawden, Kent Pitman, Jon Taft, Neil Mayle,
John Lamping, Gwyn Osnos, Tracy Larrabee, George
Carrette, Soma Chaudhuri, Bill Chiarchiaro, Steven Kirsch,
Leigh Klotz, Wayne Noss, Todd Cass, Patrick O'Donnell,
Kevin Theobald, Daniel Weise, Kenneth Sinclair, Anthony
Courtemanche, Henry M. Wu, Andrew Berlin, and Ruth
Shyu.

Beyond the MIT implementation, we would like to thank the
many people who worked on the IEEE Scheme standard,
including William Clinger and Jonathan Rees, who edited

the R'RS, and Chris Haynes, David Bartley, Chris Hanson,
and Jim Miller, who prepared the IEEE standard.

Dan Friedman has been a long-time leader of the
Scheme community. The community's broader work
goes beyond issues of language design to encompass

significant educational innovations, such as the high-school
curriculum based on EdScheme by Schemer's Inc., and the
wonderful books by Mike Eisenberg and by Brian Harvey
and Matthew Wright.

We appreciate the work of those who contributed to making
this a real book, especially Terry Ehling, Larry Cohen,
and Paul Bethge at the MIT Press. Ella Mazel found the
wonderful cover image. For the second edition we are
particularly grateful to Bernard and Ella Mazel for help
with the book design, and to David Jones, TEX wizard
extraordinaire. We also are indebted to those readers
who made penetrating comments on the new draft: Jacob
Katzenelson, Hardy Mayer, Jim Miller, and especially Brian
Harvey, who did unto this book as Julie did unto his book
Simply Scheme.

Finally, we would like to acknowledge the support of
the organizations that have encouraged this work over
the years, including support from Hewlett-Packard, made
possible by Ira Goldstein and Joel Birnbaum, and support
from DARPA, made possible by Bob Kahn.

Chapter 1

Building Abstractions with Procedures

The acts of the mind, wherein it exerts its
power over simple ideas, are chiefly these three:
1. Combining several simple ideas into one
compound one, and thus all complex ideas are
made. 2. The second is bringing two ideas,
whether simple or complex, together, and setting
them by one another so as to take a view of
them at once, without uniting them into one, by
which it gets all its ideas of relations. 3. The
third is separating them from all other ideas that
accompany them in their real existence: this is
called abstraction, and thus all its general ideas
are made.

John Locke, An Essay Concerning Human
Understanding (1690)

We are about to study the idea of a computational process.
Computational processes are abstract beings that inhabit
computers. As they evolve, processes manipulate other
abstract things called data. The evolution of a process is
directed by a pattern of rules called a program. People
create programs to direct processes. In effect, we conjure
the spirits of the computer with our spells.

A computational process is indeed much like a sorcerer's
idea of a spirit. It cannot be seen or touched. It is not
composed of matter at all. However, it is very real. It can
perform intellectual work. It can answer questions. It can
affect the world by disbursing money at a bank or by
controlling a robot arm in a factory. The programs we use
to conjure processes are like a sorcerer's spells. They are
carefully composed from symbolic expressions in arcane
and esoteric programming languages that prescribe the
tasks we want our processes to perform.

A computational process, in a correctly working computer,
executes programs precisely and accurately. Thus, like
the sorcerer's apprentice, novice programmers must learn
to understand and to anticipate the consequences of
their conjuring. Even small errors (usually called bugs or
glitches) in programs can have complex and unanticipated
consequences.

Fortunately, learning to program is considerably less
dangerous than learning sorcery, because the spirits we
deal with are conveniently contained in a secure way. Real-
world programming, however, requires care, expertise, and
wisdom. A small bug in a computer-aided design program,
for example, can lead to the catastrophic collapse of an
airplane or a dam or the self-destruction of an industrial
robot.

Master software engineers have the ability to organize
programs so that they can be reasonably sure that the

resulting processes will perform the tasks intended. They
can visualize the behavior of their systems in advance.
They know how to structure programs so that unanticipated
problems do not lead to catastrophic consequences, and
when problems do arise, they can debug their programs.
Well-designed computational systems, like well-designed
automobiles or nuclear reactors, are designed in a modular
manner, so that the parts can be constructed, replaced, and
debugged separately.

Programming in Lisp

We need an appropriate language for describing
processes, and we will use for this purpose the
programming language Lisp. Just as our everyday thoughts
are usually expressed in our natural language (such
as English, French, or Japanese), and descriptions of
quantitative phenomena are expressed with mathematical
notations, our procedural thoughts will be expressed
in Lisp. Lisp was invented in the late 1950s as a
formalism for reasoning about the use of certain kinds
of logical expressions, called recursion equations, as a
model for computation. The language was conceived by
John McCarthy and is based on his paper "Recursive
Functions of Symbolic Expressions and Their Computation
by Machine" (McCarthy 1960).

Despite its inception as a mathematical formalism, Lisp is
a practical programming language. A Lisp interpreter is a
machine that carries out processes described in the Lisp

language. The first Lisp interpreter was implemented by
McCarthy with the help of colleagues and students in the
Artificial Intelligence Group of the MIT Research Laboratory

of Electronics and in the MIT Computation Center."* Lisp,
whose name is an acronym for LISt Processing, was
designed to provide symbol-manipulating capabilities for
attacking programming problems such as the symbolic
differentiation and integration of algebraic expressions. It
included for this purpose new data objects known as atoms
and lists, which most strikingly set it apart from all other
languages of the period.

Lisp was not the product of a concerted design effort.
Instead, it evolved informally in an experimental manner in
response to users' needs and to pragmatic implementation
considerations. Lisp's informal evolution has continued
through the years, and the community of Lisp users has
traditionally resisted attempts to promulgate any "official”
definition of the language. This evolution, together with
the flexibility and elegance of the initial conception, has
enabled Lisp, which is the second oldest language in
widespread use today (only Fortran is older), to continually
adapt to encompass the most modern ideas about program
design. Thus, Lisp is by now a family of dialects, which,
while sharing most of the original features, may differ from

1 The Lisp 1 Programmer's Manual appeared in 1960, and the Lisp 1.5
Programmer's Manual (McCarthy 1965) was published in 1962. The early
history of Lisp is described in McCarthy 1978.

one another in significant ways. The dialect of Lisp used in
this book is called Scheme.”

Because of its experimental character and its emphasis
on symbol manipulation, Lisp was at first very inefficient
for numerical computations, at least in comparison with
Fortran. Over the years, however, Lisp compilers have
been developed that translate programs into machine
code that can perform numerical computations reasonably
efficiently. And for special applications, Lisp has been

used with great effectiveness.’ Although Lisp has not yet

2 The two dialects in which most major Lisp programs of the 1970s were
written are MacLisp (Moon 1978; Pitman 1983), developed at the MIT
Project MAC, and Interlisp (Teitelman 1974), developed at Bolt Beranek
and Newman Inc. and the Xerox Palo Alto Research Center. Portable
Standard Lisp (Hearn 1969; Griss 1981) was a Lisp dialect designed to be
easily portable between different machines. MacLisp spawned a number
of subdialects, such as Franz Lisp, which was developed at the University
of California at Berkeley, and Zetalisp (Moon 1981), which was based
on a special-purpose processor designed at the MIT Atrtificial Intelligence
Laboratory to run Lisp very efficiently. The Lisp dialect used in this book,
called Scheme (Steele 1975), was invented in 1975 by Guy Lewis Steele
Jr. and Gerald Jay Sussman of the MIT Artificial Intelligence Laboratory
and later reimplemented for instructional use at MIT. Scheme became an
IEEE standard in 1990 (IEEE 1990). The Common Lisp dialect (Steele
1982, Steele 1990) was developed by the Lisp community to combine
features from the earlier Lisp dialects to make an industrial standard for
Lisp. Common Lisp became an ANSI standard in 1994 (ANS| 1994).

3 One such special application was a breakthrough computation of
scientific importance -- an integration of the motion of the Solar System
that extended previous results by nearly two orders of magnitude, and
demonstrated that the dynamics of the Solar System is chaotic. This

overcome its old reputation as hopelessly inefficient, Lisp
is now used in many applications where efficiency is not
the central concern. For example, Lisp has become a
language of choice for operating-system shell languages
and for extension languages for editors and computer-
aided design systems.

If Lisp is not a mainstream language, why are we using
it as the framework for our discussion of programming?
Because the language possesses unique features that
make it an excellent medium for studying important
programming constructs and data structures and for
relating them to the linguistic features that support them.
The most significant of these features is the fact that
Lisp descriptions of processes, called procedures, can
themselves be represented and manipulated as Lisp
data. The importance of this is that there are powerful
program-design techniques that rely on the ability to
blur the traditional distinction between "passive" data and
"active" processes. As we shall discover, Lisp's flexibility
in handling procedures as data makes it one of the
most convenient languages in existence for exploring
these techniques. The ability to represent procedures
as data also makes Lisp an excellent language for
writing programs that must manipulate other programs

computation was made possible by new integration algorithms, a special-
purpose compiler, and a special-purpose computer all implemented with
the aid of software tools written in Lisp (Abelson et al. 1992; Sussman and
Wisdom 1992).

as data, such as the interpreters and compilers that
support computer languages. Above and beyond these
considerations, programming in Lisp is great fun.

1.1 The Elements of
Programming

A powerful programming language is more than just a
means for instructing a computer to perform tasks. The
language also serves as a framework within which we
organize our ideas about processes. Thus, when we
describe a language, we should pay particular attention
to the means that the language provides for combining
simple ideas to form more complex ideas. Every powerful
language has three mechanisms for accomplishing this:

primitive expressions, which represent the simplest
entities the language is concerned with,

means of combination, by which compound elements
are built from simpler ones, and

means of abstraction, by which compound elements
can be named and manipulated as units.

In programming, we deal with two kinds of elements:
procedures and data. (Later we will discover that they are
really not so distinct.) Informally, data is "stuff* that we
want to manipulate, and procedures are descriptions of

the rules for manipulating the data. Thus, any powerful
programming language should be able to describe primitive
data and primitive procedures and should have methods
for combining and abstracting procedures and data.

In this chapter we will deal only with simple humerical data

so that we can focus on the rules for building procedures.”
In later chapters we will see that these same rules allow us
to build procedures to manipulate compound data as well.

1.1.1 Expressions

One easy way to get started at programming is to examine
some typical interactions with an interpreter for the Scheme
dialect of Lisp. Imagine that you are sitting at a computer

4 The characterization of numbers as "simple data" is a barefaced bluff. In
fact, the treatment of numbers is one of the trickiest and most confusing
aspects of any programming language. Some typical issues involved are
these: Some computer systems distinguish integers, such as 2, from
real numbers, such as 2.71. Is the real number 2.00 different from the
integer 2? Are the arithmetic operations used for integers the same as
the operations used for real numbers? Does 6 divided by 2 produce 3, or
3.0? How large a number can we represent? How many decimal places
of accuracy can we represent? Is the range of integers the same as the
range of real numbers? Above and beyond these questions, of course,
lies a collection of issues concerning roundoff and truncation errors -- the
entire science of numerical analysis. Since our focus in this book is on
large-scale program design rather than on numerical techniques, we are
going to ignore these problems. The numerical examples in this chapter
will exhibit the usual roundoff behavior that one observes when using
arithmetic operations that preserve a limited number of decimal places of
accuracy in noninteger operations.

terminal. You type an expression, and the interpreter
responds by displaying the result of its evaluating that
expression.

One kind of primitive expression you might type is a
number. (More precisely, the expression that you type
consists of the numerals that represent the number in base
10.) If you present Lisp with a number

486

the interpreter will respond by printing®
486

Expressions representing numbers may be combined with
an expression representing a primitive procedure (such as
+ or *) to form a compound expression that represents
the application of the procedure to those numbers. For
example:

(+ 137 349)
486

(- 1000 334)
666

(* 5 99)
495

(/ 10 5)

2

(+ 2.7 10)

5 Throughout this book, when we wish to emphasize the distinction
between the input typed by the user and the response printed by the
interpreter, we will show the latter in slanted characters.

12.7

Expressions such as these, formed by delimiting a list
of expressions within parentheses in order to denote
procedure application, are called combinations. The
leftmost element in the list is called the operator, and
the other elements are called operands. The value of
a combination is obtained by applying the procedure
specified by the operator to the arguments that are the
values of the operands.

The convention of placing the operator to the left of
the operands is known as prefix notation, and it may
be somewhat confusing at first because it departs
significantly from the customary mathematical convention.
Prefix notation has several advantages, however. One of
them is that it can accommodate procedures that may
take an arbitrary number of arguments, as in the following
examples:

(+ 21 35 12 7)
75

(* 25 4 12)
1200

No ambiguity can arise, because the operator is always the
leftmost element and the entire combination is delimited by
the parentheses.

A second advantage of prefix notation is that it extends
in a straightforward way to allow combinations to be

nested, that is, to have combinations whose elements are
themselves combinations:

(+ (* 35) (- 10 6))

19

There is no limit (in principle) to the depth of such nesting
and to the overall complexity of the expressions that the
Lisp interpreter can evaluate. It is we humans who get
confused by still relatively simple expressions such as

(+ (*3(+(*24) (+35))) (+(-107) 6))
which the interpreter would readily evaluate to be 57. We

can help ourselves by writing such an expression in the
form

(+(* 3
(+ (* 2 4)
(+35)))
(+ (- 10 7)

6))

following a formatting convention known as pretty-printing,
in which each long combination is written so that the
operands are aligned vertically. The resulting indentations

display clearly the structure of the expression.®

6 Lisp systems typically provide features to aid the user in formatting
expressions. Two especially useful features are one that automatically
indents to the proper pretty-print position whenever a new line is started
and one that highlights the matching left parenthesis whenever a right
parenthesis is typed.

Even with complex expressions, the interpreter always
operates in the same basic cycle: It reads an expression
from the terminal, evaluates the expression, and prints the
result. This mode of operation is often expressed by saying
that the interpreter runs in a read-eval-print loop. Observe
in particular that it is not necessary to explicitly instruct the

interpreter to print the value of the expression.’
1.1.2 Naming and the Environment

A critical aspect of a programming language is the means it
provides for using names to refer to computational objects.
We say that the name identifies a variable whose value is
the object.

In the Scheme dialect of Lisp, we name things with def i ne.
Typing

(define size 2)

causes the interpreter to associate the value 2 with the
name si ze.? Once the name si ze has been associated with
the number 2, we can refer to the value 2 by name:

si ze

7 Lisp obeys the convention that every expression has a value. This
convention, together with the old reputation of Lisp as an inefficient
language, is the source of the quip by Alan Perlis (paraphrasing Oscar
Wilde) that "Lisp programmers know the value of everything but the cost
of nothing."

8 In this book, we do not show the interpreter's response to evaluating
definitions, since this is highly implementation-dependent.

2
(* 5 size)
10

Here are further examples of the use of def i ne:

(define pi 3.14159)

(define radius 10)

(* pi (* radius radius))

314. 159

(define circunference (* 2 pi radius))

circunference
62. 8318

Define iS our language's simplest means of abstraction,
for it allows us to use simple names to refer to the
results of compound operations, such as the ci r cunf er ence
computed above. In general, computational objects may
have very complex structures, and it would be extremely
inconvenient to have to remember and repeat their
details each time we want to use them. Indeed, complex
programs are constructed by building, step by step,
computational objects of increasing complexity. The
interpreter makes this step-by-step program construction
particularly convenient because name-object associations
can be created incrementally in successive interactions.
This feature encourages the incremental development and
testing of programs and is largely responsible for the fact
that a Lisp program usually consists of a large number of
relatively simple procedures.

It should be clear that the possibility of associating values
with symbols and later retrieving them means that the
interpreter must maintain some sort of memory that keeps
track of the name-object pairs. This memory is called the
environment (more precisely the global environment, since
we will see later that a computation may involve a number

of different environments).’
1.1.3 Evaluating Combinations

One of our goals in this chapter is to isolate issues about
thinking procedurally. As a case in point, let us consider
that, in evaluating combinations, the interpreter is itself
following a procedure.

To evaluate a combination, do the following:
1. Evaluate the subexpressions of the combination.

2. Apply the procedure that is the value of the leftmost
subexpression (the operator) to the arguments that are
the values of the other subexpressions (the operands).

Even this simple rule illustrates some important points
about processes in general. First, observe that the first step
dictates that in order to accomplish the evaluation process
for a combination we must first perform the evaluation
process on each element of the combination. Thus, the

9 Chapter 3 will show that this notion of environment is crucial, both
for understanding how the interpreter works and for implementing
interpreters.

evaluation rule is recursive in nature; that is, it includes, as
one of its steps, the need to invoke the rule itself.*

Notice how succinctly the idea of recursion can be used to
express what, in the case of a deeply nested combination,
would otherwise be viewed as a rather complicated
process. For example, evaluating

(* (+2(* 486))

(+357)

requires that the evaluation rule be applied to four different
combinations. We can obtain a picture of this process by
representing the combination in the form of a tree, as
shown in figure 1.1. Each combination is represented by
a node with branches corresponding to the operator and
the operands of the combination stemming from it. The
terminal nodes (that is, nodes with no branches stemming
from them) represent either operators or numbers. Viewing
evaluation in terms of the tree, we can imagine that the
values of the operands percolate upward, starting from the
terminal nodes and then combining at higher and higher
levels. In general, we shall see that recursion is a very
powerful technique for dealing with hierarchical, treelike

10 It may seem strange that the evaluation rule says, as part of the first
step, that we should evaluate the leftmost element of a combination, since
at this point that can only be an operator such as + or * representing a
built-in primitive procedure such as addition or multiplication. We will see
later that it is useful to be able to work with combinations whose operators
are themselves compound expressions.

objects. In fact, the "percolate values upward" form of the
evaluation rule is an example of a general kind of process
known as tree accumulation.

Figure 1.1: Tree representation, showing the value of each
subcombination.

=230

* 6

4
Next, observe that the repeated application of the first step
brings us to the point where we need to evaluate, not
combinations, but primitive expressions such as numerals,

built-in operators, or other names. We take care of the
primitive cases by stipulating that

the values of numerals are the numbers that they
name,

the values of built-in operators are the machine
instruction sequences that carry out the corresponding
operations, and

the values of other names are the objects associated
with those names in the environment.

We may regard the second rule as a special case of
the third one by stipulating that symbols such as + and
* are also included in the global environment, and are
associated with the sequences of machine instructions that
are their "values." The key point to notice is the role of the
environment in determining the meaning of the symbols in
expressions. In an interactive language such as Lisp, it is
meaningless to speak of the value of an expression such
as (+ x 1) without specifying any information about the
environment that would provide a meaning for the symbol x
(or even for the symbol +). As we shall see in chapter 3, the
general notion of the environment as providing a context in
which evaluation takes place will play an important role in
our understanding of program execution.

Notice that the evaluation rule given above does not handle
definitions. For instance, evaluating (defi ne x 3) does not
apply def i ne to two arguments, one of which is the value of

the symbol x and the other of which is 3, since the purpose
of the defi ne is precisely to associate x with a value. (That
is, (define x 3) is not a combination.)

Such exceptions to the general evaluation rule are called
special forms. Defi ne is the only example of a special form
that we have seen so far, but we will meet others shortly.
Each special form has its own evaluation rule. The various
kinds of expressions (each with its associated evaluation
rule) constitute the syntax of the programming language.
In comparison with most other programming languages,
Lisp has a very simple syntax; that is, the evaluation rule
for expressions can be described by a simple general rule
together with specialized rules for a small number of special

forms.™

1.1.4 Compound Procedures

11 Special syntactic forms that are simply convenient alternative surface
structures for things that can be written in more uniform ways are
sometimes called syntactic sugar, to use a phrase coined by Peter Landin.
In comparison with users of other languages, Lisp programmers, as a
rule, are less concerned with matters of syntax. (By contrast, examine any
Pascal manual and notice how much of it is devoted to descriptions of
syntax.) This disdain for syntax is due partly to the flexibility of Lisp, which
makes it easy to change surface syntax, and partly to the observation that
many "convenient" syntactic constructs, which make the language less
uniform, end up causing more trouble than they are worth when programs
become large and complex. In the words of Alan Perlis, "Syntactic sugar
causes cancer of the semicolon."

We have identified in Lisp some of the elements that must
appear in any powerful programming language:

Numbers and arithmetic operations are primitive data
and procedures.

Nesting of combinations provides a means of
combining operations.

Definitions that associate names with values provide a
limited means of abstraction.

Now we will learn about procedure definitions, a much
more powerful abstraction technique by which a compound
operation can be given a hame and then referred to as a
unit.

We begin by examining how to express the idea of
"squaring." We might say, "To square something, multiply
it by itself." This is expressed in our language as

(define (square x) (* x X))
We can understand this in the following way:
(define (square x) (* X X))
T T T T T 1
To square sonething, multiply it by itself.

We have here a compound procedure, which has been
given the name square. The procedure represents the
operation of multiplying something by itself. The thing
to be multiplied is given a local name, x, which plays

the same role that a pronoun plays in natural language.
Evaluating the definition creates this compound procedure

and associates it with the name square.™

The general form of a procedure definition is

(define (<name> <formal paraneters>) <
body>)

The <name> is a symbol to be associated with the

procedure definition in the environment.”® The <formal
parameters> are the names used within the body of the
procedure to refer to the corresponding arguments of the
procedure. The <body> is an expression that will yield
the value of the procedure application when the formal
parameters are replaced by the actual arguments to which

the procedure is applied.** The <name> and the <formal

12 Observe that there are two different operations being combined here:
we are creating the procedure, and we are giving it the name square. It is
possible, indeed important, to be able to separate these two notions -- to
create procedures without naming them, and to give names to procedures
that have already been created. We will see how to do this in section 1.3.2.
13 Throughout this book, we will describe the general syntax of
expressions by using italic symbols delimited by angle brackets -- e.g.,
<name> -- to denote the "slots" in the expression to be filled in when such
an expression is actually used.

14 More generally, the body of the procedure can be a sequence of
expressions. In this case, the interpreter evaluates each expression in the
sequence in turn and returns the value of the final expression as the value
of the procedure application.

parameters> are grouped within parentheses, just as they
would be in an actual call to the procedure being defined.

Having defined squar e, we can now use it:

(square 21)
441

(square (+ 2 5))
49

(square (square 3))
81

We can also use squar e as a building block in defining other
procedures. For example, x> +y® can be expressed as

(+ (square x) (square y))

We can easily define a procedure sum of -squares that,

given any two numbers as arguments, produces the sum
of their squares:
(define (sumof-squares x y)

(+ (square x) (square y)))

(sum of -squares 3 4)
25

Now we can use sumof-squares as a building block in
constructing further procedures:

(define (f a)
(sumof-squares (+ a 1) (* a 2)))

(f 5)

136

Compound procedures are used in exactly the same way
as primitive procedures. Indeed, one could not tell by
looking at the definition of sum of -squares given above
whether squar e was built into the interpreter, like + and *,
or defined as a compound procedure.

1.1.5 The Substitution Model for
Procedure Application

To evaluate a combination whose operator names a
compound procedure, the interpreter follows much the
same process as for combinations whose operators name
primitive procedures, which we described in section 1.1.3.
That is, the interpreter evaluates the elements of the
combination and applies the procedure (which is the value
of the operator of the combination) to the arguments (which
are the values of the operands of the combination).

We can assume that the mechanism for applying primitive
procedures to arguments is built into the interpreter.
For compound procedures, the application process is as
follows:

To apply a compound procedure to arguments,
evaluate the body of the procedure with each formal
parameter replaced by the corresponding argument.

To illustrate this process, let's evaluate the combination
(f 5)

where f is the procedure defined in section 1.1.4. We begin
by retrieving the body of f:

(sumof -squares (+ a 1) (* a 2))
Then we replace the formal parameter a by the argument 5:
(sumof -squares (+ 5 1) (* 5 2))

Thus the problem reduces to the evaluation of a
combination with two operands and an operator sum
of -squares. Evaluating this combination involves three
subproblems. We must evaluate the operator to get the
procedure to be applied, and we must evaluate the
operands to get the arguments. Now (+ 5 1) produces
6 and (* 5 2) produces 10, so we must apply the
sum of - squar es procedure to 6 and 10. These values are
substituted for the formal parameters x and y in the body of
sum of - squar es, reducing the expression to

(+ (square 6) (square 10))

If we use the definition of squar e, this reduces to
(+ (* 6 6) (* 10 10))

which reduces by multiplication to

(+ 36 100)

and finally to

136

The process we have just described is called the
substitution model for procedure application. It can be
taken as a model that determines the "meaning" of

procedure application, insofar as the procedures in this
chapter are concerned. However, there are two points that
should be stressed:

The purpose of the substitution is to help us think about
procedure application, not to provide a description of
how the interpreter really works. Typical interpreters do
not evaluate procedure applications by manipulating
the text of a procedure to substitute values for the
formal parameters. In practice, the "substitution” is
accomplished by using a local environment for the
formal parameters. We will discuss this more fully in
chapters 3 and 4 when we examine the implementation
of an interpreter in detail.

Over the course of this book, we will present a
sequence of increasingly elaborate models of how
interpreters work, culminating with a complete
implementation of an interpreter and compiler in
chapter 5. The substitution model is only the first of
these models -- a way to get started thinking formally
about the evaluation process. In general, when
modeling phenomena in science and engineering,
we begin with simplified, incomplete models. As we
examine things in greater detail, these simple models
become inadequate and must be replaced by more
refined models. The substitution model is no exception.
In particular, when we address in chapter 3 the use
of procedures with "mutable data," we will see that
the substitution model breaks down and must be

replaced by a more complicated model of procedure
application.*

Applicative order versus normal order

According to the description of evaluation given in
section 1.1.3, the interpreter first evaluates the operator
and operands and then applies the resulting procedure
to the resulting arguments. This is not the only way to
perform evaluation. An alternative evaluation model would
not evaluate the operands until their values were needed.
Instead it would first substitute operand expressions for
parameters until it obtained an expression involving only
primitive operators, and would then perform the evaluation.
If we used this method, the evaluation of

(f 5)
would proceed according to the sequence of expansions
(sumof -squares (+ 5 1) (* 5 2))

15 Despite the simplicity of the substitution idea, it turns out to be
surprisingly complicated to give a rigorous mathematical definition of
the substitution process. The problem arises from the possibility of
confusion between the names used for the formal parameters of a
procedure and the (possibly identical) names used in the expressions
to which the procedure may be applied. Indeed, there is a long history
of erroneous definitions of substitution in the literature of logic and
programming semantics. See Stoy 1977 for a careful discussion of
substitution.

(+ (square (+ 5 1)) (square (* 5 2)))

(+ (*(+51) (+51) (*(*52 (*52))
followed by the reductions
(+ (* 6 6) (* 10 10))

(+ 36 100)

136

This gives the same answer as our previous evaluation
model, but the process is different. In particular, the
evaluations of (+ 5 1) and (* 5 2) are each performed twice
here, corresponding to the reduction of the expression

(* x x)
with x replaced respectively by (+ 5 1) and (* 5 2).

This alternative "fully expand and then reduce" evaluation
method is known as normal-order evaluation, in contrast to
the "evaluate the arguments and then apply" method that
the interpreter actually uses, which is called applicative-
order evaluation. It can be shown that, for procedure
applications that can be modeled using substitution
(including all the procedures in the first two chapters of this
book) and that yield legitimate values, normal-order and
applicative-order evaluation produce the same value. (See
exercise 1.5 for an instance of an "illegitimate" value where

normal-order and applicative-order evaluation do not give
the same result.)

Lisp uses applicative-order evaluation, partly because of
the additional efficiency obtained from avoiding multiple
evaluations of expressions such as those illustrated with (+
5 1) and (* 5 2) above and, more significantly, because
normal-order evaluation becomes much more complicated
to deal with when we leave the realm of procedures that
can be modeled by substitution. On the other hand, normal-
order evaluation can be an extremely valuable tool, and we
will investigate some of its implications in chapters 3 and

416

1.1.6 Conditional Expressions and
Predicates

The expressive power of the class of procedures that we
can define at this point is very limited, because we have
no way to make tests and to perform different operations
depending on the result of a test. For instance, we cannot
define a procedure that computes the absolute value of a
number by testing whether the number is positive, negative,
or zero and taking different actions in the different cases
according to the rule

16 In chapter 3 we will introduce stream processing, which is a way of
handling apparently "infinite" data structures by incorporating a limited
form of normal-order evaluation. In section 4.2 we will modify the Scheme
interpreter to produce a normal-order variant of Scheme.

r fr>=10

|z| = D fr=10

—r Hr=10
This construct is called a case analysis, and there is a
special form in Lisp for notating such a case analysis. It is

called cond (which stands for "conditional"), and it is used
as follows:

(define (abs x)
(cond ((> x 0) x)
((=x0) 0)
((<x0) (- x))))
The general form of a conditional expression is
(cond (<p1> <e;>)

(<p2> <
e2>)

.(<pn> <
€n>))
consisting of the symbol cond followed by parenthesized

pairs of expressions (<p> <e>) called clauses. The first
expression in each pair is a predicate -- that is, an

expression whose value is interpreted as either true or
false.'’

Conditional expressions are evaluated as follows. The
predicate <p,> is evaluated first. If its value is false, then
<p.> is evaluated. If <p,>'s value is also false, then <p;> is
evaluated. This process continues until a predicate is found
whose value is true, in which case the interpreter returns
the value of the corresponding consequent expression <e>
of the clause as the value of the conditional expression. If
none of the <p>'s is found to be true, the value of the cond
is undefined.

The word predicate is used for procedures that return true
or false, as well as for expressions that evaluate to true
or false. The absolute-value procedure abs makes use
of the primitive predicates >, <, and =."® These take two
numbers as arguments and test whether the first number is,
respectively, greater than, less than, or equal to the second
number, returning true or false accordingly.

Another way to write the absolute-value procedure is

17 "Interpreted as either true or false" means this: In Scheme, there
are two distinguished values that are denoted by the constants #t and
#f. When the interpreter checks a predicate's value, it interprets #f as
false. Any other value is treated as true. (Thus, providing #t is logically
unnecessary, but it is convenient.) In this book we will use names true and
false, which are associated with the values #t and #f respectively.

18 Abs also uses the "minus" operator -, which, when used with a single
operand, as in (- x), indicates negation.

(define (abs x)
(cond ((<x 0) (- x))
(else x)))

which could be expressed in English as "If x is less than
zero return - x; otherwise return X." el se is a special symbol
that can be used in place of the <p> in the final clause of a
cond. This causes the cond to return as its value the value
of the corresponding <e> whenever all previous clauses
have been bypassed. In fact, any expression that always
evaluates to a true value could be used as the <p> here.

Here is yet another way to write the absolute-value
procedure:
(define (abs x)
(if (<x 0)

(- x)

X))
This uses the special form if, a restricted type of
conditional that can be used when there are precisely two
cases in the case analysis. The general form of an if
expression is

(i f <predicate> <consequent> <
al ternative>)

To evaluate an if expression, the interpreter starts by
evaluating the <predicate> part of the expression. If the
<predicate> evaluates to a true value, the interpreter
then evaluates the <consequent> and returns its value.

Otherwise it evaluates the <alternative> and returns its
value.™

In addition to primitive predicates such as <, =, and >, there
are logical composition operations, which enable us to
construct compound predicates. The three most frequently
used are these:

(and <el> ... <e,>)

The interpreter evaluates the expressions <e> one at a
time, in left-to-right order. If any <e> evaluates to false,
the value of the and expression is false, and the rest of
the <e>'s are not evaluated. If all <e>'s evaluate to true
values, the value of the and expression is the value of the
last one.

(or <el>...<e,>)

The interpreter evaluates the expressions <e> one at
a time, in left-to-right order. If any <e> evaluates to a
true value, that value is returned as the value of the or
expression, and the rest of the <e>'s are not evaluated. If
all <e>'s evaluate to false, the value of the or expression
is false.

19 A minor difference between if and cond is that the <e> part of each
cond clause may be a sequence of expressions. If the corresponding <p>
is found to be true, the expressions <e> are evaluated in sequence and the
value of the final expression in the sequence is returned as the value of the
cond. In an if expression, however, the <consequent> and <alternative>
must be single expressions.

(not <e>)
The value of anot expression is true when the expression
<e> evaluates to false, and false otherwise.

Notice that and and or are special forms, not procedures,
because the subexpressions are not necessarily all
evaluated. Not is an ordinary procedure.

As an example of how these are used, the condition that a
number x be in the range 5 < x < 10 may be expressed as

(and (> x 5) (< x 10))

As another example, we can define a predicate to test
whether one number is greater than or equal to another as

(define (>= x vy)
(or (> xy) (=xV)))

or alternatively as

(define (>= x vy)
(not (< xy)))

Exercise 1.1. Below is a sequence of expressions. What
is the result printed by the interpreter in response to each
expression? Assume that the sequence is to be evaluated
in the order in which it is presented.

10

(+ 5 3 4)

(- 91)

(/ 6 2)

(+(*24) (- 46))
(define a 3)
(define b (+ a 1))

(+ab(*ab))
(= ab)
(if (and (> b a) (<b (* abh)))

a 4) 6)
b 4) (+6 7 a))

(el se 25))
(+2 (if (>ba) ba))
(* (cond ((> a b) a)

((< ab) b)
(else -1))
(+al))

Exercise 1.2. Translate the following expression into prefix
form

S+4+ (2 f3-(643)))
36— 232 -7
Exercise 1.3. Define a procedure that takes three numbers

as arguments and returns the sum of the squares of the
two larger numbers.

Exercise 1.4. Observe that our model of evaluation
allows for combinations whose operators are compound
expressions. Use this observation to describe the behavior
of the following procedure:

(define (a-plus-abs-b a b)

((if (>b0) +-) ab))

Exercise 1.5. Ben Bitdiddle has invented a test to
determine whether the interpreter he is faced with is using
applicative-order evaluation or normal-order evaluation. He
defines the following two procedures:

(define (p) (p))

(define (test x y)
(if (=x0)
0

¥))
Then he evaluates the expression

(test 0 (p))

What behavior will Ben observe with an interpreter
that uses applicative-order evaluation? What behavior
will he observe with an interpreter that uses normal-
order evaluation? Explain your answer. (Assume that the
evaluation rule for the special form i f is the same whether
the interpreter is using normal or applicative order: The
predicate expression is evaluated first, and the result
determines whether to evaluate the consequent or the
alternative expression.)

1.1.7 Example: Square Roots by Newton's
Method
Procedures, as introduced above, are much like ordinary

mathematical functions. They specify a value that is
determined by one or more parameters. But there is an

important difference between mathematical functions and
computer procedures. Procedures must be effective.

As a case in point, consider the problem of computing
square roots. We can define the square-root function as

o' T = the y such that y > 0 and =
This describes a perfectly legitimate mathematical function.
We could use it to recognize whether one number is the
square root of another, or to derive facts about square
roots in general. On the other hand, the definition does
not describe a procedure. Indeed, it tells us almost nothing
about how to actually find the square root of a given
number. It will not help matters to rephrase this definition
in pseudo-Lisp:

(define (sqrt x)
(the y (and (>=y 0)
(= (square y) x))))

This only begs the question.

The contrast between function and procedure is a reflection
of the general distinction between describing properties
of things and describing how to do things, or, as it is
sometimes referred to, the distinction between declarative
knowledge and imperative knowledge. In mathematics
we are usually concerned with declarative (what is)

descriptions, whereas in computer science we are usually
concerned with imperative (how to) descriptions.”

How does one compute square roots? The most
common way is to use Newton's method of successive
approximations, which says that whenever we have a
guess y for the value of the square root of a number x, we
can perform a simple manipulation to get a better guess
(one closer to the actual square root) by averaging y with

xly.* For example, we can compute the square root of 2 as
follows. Suppose our initial guess is 1:

20 Declarative and imperative descriptions are intimately related, as
indeed are mathematics and computer science. For instance, to say that
the answer produced by a program is "correct” is to make a declarative
statement about the program. There is a large amount of research aimed
at establishing techniques for proving that programs are correct, and
much of the technical difficulty of this subject has to do with negotiating
the transition between imperative statements (from which programs are
constructed) and declarative statements (which can be used to deduce
things). In a related vein, an important current area in programming-
language design is the exploration of so-called very high-level languages,
in which one actually programs in terms of declarative statements. The
idea is to make interpreters sophisticated enough so that, given "what
is" knowledge specified by the programmer, they can generate "how to"
knowledge automatically. This cannot be done in general, but there are
important areas where progress has been made. We shall revisit this idea
in chapter 4.

21 This square-root algorithm is actually a special case of Newton's
method, which is a general technique for finding roots of equations. The
square-root algorithm itself was developed by Heron of Alexandria in the

Guess Quotient Average

1 (2/1) =2 (2+1)2)=15
15 (2/1.5)=1.3333 ((1.3333 + 1.5)/2)
= 1.4167
1.4167 (2/1.4167) = ((1.4167 +
1.4118 1.4118)/2) =
1.4142
1.4142

Continuing this process, we obtain better and better
approximations to the square root.

Now let's formalize the process in terms of procedures.
We start with a value for the radicand (the number whose
square root we are trying to compute) and a value for the
guess. If the guess is good enough for our purposes, we are
done; if not, we must repeat the process with an improved
guess. We write this basic strategy as a procedure:
(define (sqrt-iter guess x)
(i f (good-enough? guess x)
guess
(sqgrt-iter (inprove guess Xx)

x)))

first century A.D. We will see how to express the general Newton's method
as a Lisp procedure in section 1.3.4.

A guess is improved by averaging it with the quotient of the
radicand and the old guess:

(define (inprove guess Xx)
(average guess (/ x guess)))

where

(define (average x y)

(/ (+xy) 2)
We also have to say what we mean by "good enough.” The
following will do for illustration, but it is not really a very
good test. (See exercise 1.7.) The idea is to improve the
answer until it is close enough so that its square differs from
the radicand by less than a predetermined tolerance (here

0.001):*

(define (good-enough? guess x)
(< (abs (- (square guess) x)) 0.001))

Finally, we need a way to get started. For instance, we can
always guess that the square root of any number is 1:%

22 We will usually give predicates names ending with question marks,
to help us remember that they are predicates. This is just a stylistic
convention. As far as the interpreter is concerned, the question mark is
just an ordinary character.

23 Observe that we express our initial guess as 1.0 rather than 1.
This would not make any difference in many Lisp implementations. MIT
Scheme, however, distinguishes between exact integers and decimal
values, and dividing two integers produces a rational number rather than a
decimal. For example, dividing 10 by 6 yields 5/3, while dividing 10.0 by 6.0
yields 1.6666666666666667. (We will learn how to implement arithmetic

(define (sgrt x)
(sqrt-iter 1.0 x))
If we type these definitions to the interpreter, we can use
sqrt just as we can use any procedure:
(sqrt 9)
3. 00009155413138
(sqrt (+ 100 37))
11.704699917758145
(sgrt (+ (sqgrt 2) (sart 3)))
1.7739279023207892
(square (sqrt 1000))
1000. 000369924366

The sgrt program also illustrates that the simple procedural
language we have introduced so far is sufficient for writing
any purely numerical program that one could write in, say,
C or Pascal. This might seem surprising, since we have not
included in our language any iterative (looping) constructs
that direct the computer to do something over and over
again. sSqrt-iter, on the other hand, demonstrates how

on rational numbers in section 2.1.1.) If we start with an initial guess of
1 in our square-root program, and X is an exact integer, all subsequent
values produced in the square-root computation will be rational numbers
rather than decimals. Mixed operations on rational numbers and decimals
always yield decimals, so starting with an initial guess of 1.0 forces alll
subsequent values to be decimals.

iteration can be accomplished using no special construct
other than the ordinary ability to call a procedure.”

Exercise 1.6. Alyssa P. Hacker doesn't see why i f needs
to be provided as a special form. "Why can't | just define
it as an ordinary procedure in terms of cond?" she asks.

Alyssa's friend Eva Lu Ator claims this can indeed be done,
and she defines a new version of i f :

(define (newif predicate then-clause el se-clause)

(cond (predicate then-clause)
(el se el se-clause)))
Eva demonstrates the program for Alyssa:
(new-if (=2 3) 05)
5

(new-if (=1 1) 05)
0

Delighted, Alyssa uses newif to rewrite the square-root
program:

(define (sgrt-iter guess x)
(newif (good-enough? guess x)
guess

(sqrt-iter (inprove guess X)

24 Readers who are worried about the efficiency issues involved in using
procedure calls to implement iteration should note the remarks on "tail
recursion” in section 1.2.1.

x)))

What happens when Alyssa attempts to use this to compute
square roots? Explain.

Exercise 1.7. The good- enough? test used in computing
square roots will not be very effective for finding the square
roots of very small numbers. Also, in real computers,
arithmetic operations are almost always performed with
limited precision. This makes our test inadequate for very
large numbers. Explain these statements, with examples
showing how the test fails for small and large numbers.
An alternative strategy for implementing good- enough? is to
watch how guess changes from one iteration to the next
and to stop when the change is a very small fraction of
the guess. Design a square-root procedure that uses this
kind of end test. Does this work better for small and large
numbers?

Exercise 1.8. Newton's method for cube roots is based on
the fact that if y is an approximation to the cube root of x,
then a better approximation is given by the value

iy + Dy
3

Use this formula to implement a cube-root procedure
analogous to the square-root procedure. (In section 1.3.4
we will see how to implement Newton's method in general

as an abstraction of these square-root and cube-root
procedures.)

1.1.8 Procedures as Black-Box
Abstractions

sqrt is our first example of a process defined by a set of
mutually defined procedures. Notice that the definition of
sqrt-iter iS recursive; that is, the procedure is defined in
terms of itself. The idea of being able to define a procedure
in terms of itself may be disturbing; it may seem unclear
how such a "circular" definition could make sense at all,
much less specify a well-defined process to be carried out
by a computer. This will be addressed more carefully in
section 1.2. But first let's consider some other important
points illustrated by the sqrt example.

Observe that the problem of computing square roots breaks
up naturally into a number of subproblems: how to tell
whether a guess is good enough, how to improve a
guess, and so on. Each of these tasks is accomplished
by a separate procedure. The entire sqrt program can be
viewed as a cluster of procedures (shown in figure 1.2) that
mirrors the decomposition of the problem into subproblems.

Figure 1.2: Procedural decomposition of the sqrt program.

ogrt
sgrt—iter
good—encugh improve
SQuars average

The importance of this decomposition strategy is not simply
that one is dividing the program into parts. After all, we
could take any large program and divide it into parts -- the
first ten lines, the next ten lines, the next ten lines, and so
on. Rather, it is crucial that each procedure accomplishes
an identifiable task that can be used as a module in defining

other procedures. For example, when we define the good-
enough? procedure in terms of squar e, we are able to regard
the squar e procedure as a "black box." We are not at that
moment concerned with how the procedure computes its
result, only with the fact that it computes the square. The
details of how the square is computed can be suppressed,
to be considered at a later time. Indeed, as far as the
good- enough? procedure is concerned, squar e is Not quite a
procedure but rather an abstraction of a procedure, a so-
called procedural abstraction. At this level of abstraction,
any procedure that computes the square is equally good.

Thus, considering only the values they return, the
following two procedures for squaring a number should be
indistinguishable. Each takes a numerical argument and

produces the square of that number as the value.”

(define (square x) (* x X))

(define (square x)
(exp (double (log x))))

(define (double x) (+ x x))

So a procedure definition should be able to suppress
detail. The users of the procedure may not have written

25 It is not even clear which of these procedures is a more efficient
implementation. This depends upon the hardware available. There are
machines for which the "obvious" implementation is the less efficient
one. Consider a machine that has extensive tables of logarithms and
antilogarithms stored in a very efficient manner.

the procedure themselves, but may have obtained it from
another programmer as a black box. A user should not need
to know how the procedure is implemented in order to use
it.

Local names

One detail of a procedure's implementation that should
not matter to the user of the procedure is the
implementer's choice of names for the procedure's formal
parameters. Thus, the following procedures should not be
distinguishable:

(define (square x) (* x X))

(define (square y) (* y vy))

This principle -- that the meaning of a procedure should
be independent of the parameter names used by its
author -- seems on the surface to be self-evident, but its
consequences are profound. The simplest consequence is
that the parameter names of a procedure must be local to
the body of the procedure. For example, we used squar e in
the definition of good- enough? in our square-root procedure:
(define (good-enough? guess x)
(< (abs (- (square guess) x)) 0.001))

The intention of the author of good- enough? is to determine
if the square of the first argument is within a given tolerance
of the second argument. We see that the author of good-
enough? used the name guess to refer to the first argument
and x to refer to the second argument. The argument of

squar e iS guess. If the author of square used x (as above)
to refer to that argument, we see that the x in good- enough?
must be a different x than the one in square. Running the
procedure squar e must not affect the value of x that is used
by good- enough?, because that value of x may be needed
by good- enough? after squar e is done computing.

If the parameters were not local to the bodies of their
respective procedures, then the parameter x in square
could be confused with the parameter x in good- enough?,
and the behavior of good- enough? would depend upon which
version of square we used. Thus, squar e would not be the
black box we desired.

A formal parameter of a procedure has a very special role in
the procedure definition, in that it doesn't matter what name
the formal parameter has. Such a name is called a bound
variable, and we say that the procedure definition binds its
formal parameters. The meaning of a procedure definition
is unchanged if a bound variable is consistently renamed

throughout the definition.”® If a variable is not bound, we
say that it is free. The set of expressions for which a binding
defines a name is called the scope of that name. In a
procedure definition, the bound variables declared as the
formal parameters of the procedure have the body of the
procedure as their scope.

26 The concept of consistent renaming is actually subtle and difficult to
define formally. Famous logicians have made embarrassing errors here.

In the definition of good- enough? above, guess and x are
bound variables but <, -, abs, and square are free. The
meaning of good- enough? should be independent of the
names we choose for guess and x so long as they are
distinct and different from <, -, abs, and square. (If we
renamed guess to abs we would have introduced a bug by
capturing the variable abs. It would have changed from free
to bound.) The meaning of good- enough? is not independent
of the names of its free variables, however. It surely
depends upon the fact (external to this definition) that the
symbol abs names a procedure for computing the absolute
value of a number. Good- enough? will compute a different
function if we substitute cos for abs in its definition.

Internal definitions and block structure

We have one kind of name isolation available to us so
far: The formal parameters of a procedure are local to the
body of the procedure. The square-root program illustrates
another way in which we would like to control the use
of names. The existing program consists of separate
procedures:
(define (sgrt x)
(sqrt-iter 1.0 x))
(define (sgrt-iter guess x)
(if (good-enough? guess x)
guess
(sqrt-iter (inprove guess x) X)))

(define (good-enough? guess x)
(< (abs (- (square guess) x)) 0.001))

(define (inprove guess Xx)
(average guess (/ x guess)))

The problem with this program is that the only procedure
that is important to users of sqrt is sqrt. The other
procedures (sqrt-iter, good-enough?, and inprove) only
clutter up their minds. They may not define any other
procedure called good- enough? as part of another program
to work together with the square-root program, because
sqgrt needs it. The problem is especially severe in
the construction of large systems by many separate
programmers. For example, in the construction of a large
library of numerical procedures, many numerical functions
are computed as successive approximations and thus
might have procedures named good- enough? and i nprove
as auxiliary procedures. We would like to localize the
subprocedures, hiding them inside sqrt so that sqrt could
coexist with other successive approximations, each having
its own private good-enough? procedure. To make this
possible, we allow a procedure to have internal definitions
that are local to that procedure. For example, in the square-
root problem we can write

(define (sqrt x)

(define (good-enough? guess x)
(< (abs (- (square guess) x)) 0.001))

(define (inprove guess x)
(average guess (/ x guess)))

(define (sqgrt-iter guess x)

(i f (good-enough? guess x)

guess
(sqrt-iter (inprove guess x) X)))

(sqrt-iter 1.0 x))

Such nesting of definitions, called block structure, is
basically the right solution to the simplest name-packaging
problem. But there is a better idea lurking here. In addition
to internalizing the definitions of the auxiliary procedures,
we can simplify them. Since x is bound in the definition of
sqrt, the procedures good- enough?, i nprove, andsgrt-iter,
which are defined internally to sqrt, are in the scope of x.
Thus, itis not necessary to pass x explicitly to each of these
procedures. Instead, we allow x to be a free variable in the
internal definitions, as shown below. Then x gets its value
from the argument with which the enclosing procedure sqrt

is called. This discipline is called lexical scoping.”’

(define (sqgrt x)
(define (good-enough? guess)
(< (abs (- (square guess) x)) 0.001))

(define (inprove guess)
(average guess (/ x guess)))

27 Lexical scoping dictates that free variables in a procedure are taken
to refer to bindings made by enclosing procedure definitions; that is, they
are looked up in the environment in which the procedure was defined. We
will see how this works in detail in chapter 3 when we study environments
and the detailed behavior of the interpreter.

(define (sqrt-iter guess)
(i f (good-enough? guess)
guess
(sqrt-iter (inprove guess))))

(sqrt-iter 1.0))

We will use block structure extensively to help us break up

large programs into tractable pieces.”® The idea of block
structure originated with the programming language Algol
60. It appears in most advanced programming languages
and is an important tool for helping to organize the
construction of large programs.

1.2 Procedures and the
Processes They Generate

We have now considered the elements of programming:
We have used primitive arithmetic operations, we have
combined these operations, and we have abstracted these
composite operations by defining them as compound
procedures. But that is not enough to enable us to say
that we know how to program. Our situation is analogous
to that of someone who has learned the rules for how
the pieces move in chess but knows nothing of typical

28 Embedded definitions must come first in a procedure body. The
management is not responsible for the consequences of running programs
that intertwine definition and use.

openings, tactics, or strategy. Like the novice chess player,
we don't yet know the common patterns of usage in the
domain. We lack the knowledge of which moves are worth
making (which procedures are worth defining). We lack the
experience to predict the consequences of making a move
(executing a procedure).

The ability to visualize the consequences of the actions
under consideration is crucial to becoming an expert
programmer, just as itis in any synthetic, creative activity. In
becoming an expert photographer, for example, one must
learn how to look at a scene and know how dark each
region will appear on a print for each possible choice of
exposure and development conditions. Only then can one
reason backward, planning framing, lighting, exposure, and
development to obtain the desired effects. So it is with
programming, where we are planning the course of action
to be taken by a process and where we control the process
by means of a program. To become experts, we must learn
to visualize the processes generated by various types of
procedures. Only after we have developed such a skKill
can we learn to reliably construct programs that exhibit the
desired behavior.

A procedure is a pattern for the local evolution of a
computational process. It specifies how each stage of the
process is built upon the previous stage. We would like to
be able to make statements about the overall, or global,
behavior of a process whose local evolution has been
specified by a procedure. This is very difficult to do in

general, but we can at least try to describe some typical
patterns of process evolution.

In this section we will examine some common "shapes" for
processes generated by simple procedures. We will also
investigate the rates at which these processes consume
the important computational resources of time and space.
The procedures we will consider are very simple. Their
role is like that played by test patterns in photography: as
oversimplified prototypical patterns, rather than practical
examples in their own right.

1.2.1 Linear Recursion and lteration

Figure 1.3: A linear recursive process for computing 6!.

{factorial &)
(v & {(fackorial 5))

f* & {* 5 f(factorial 4131}

f* 6§ {(* 5 (* 4 {factorial 211)}

f* & {(* 5 (* 4 {* I [factorial 2)131)})}

f* 6 (* 5 (* 4 {* T [* 2 {factorial 133311}
(r 8 (* 5 (* 4 (* 3 (*2 1y

(r &8 (* 5 (* 4 (* 3 Z))))

(* 8 (* 5 (* 4 63))

(r 68 (¥ 5 24))

f* & 120}

T20

We begin by considering the factorial function, defined by

ﬂ.!=ﬂ.-(?1—1:1-(?1—2}---3-2-1

There are many ways to compute factorials. One way is to
make use of the observation that n! is equal to n times (n
- 1)! for any positive integer n:

al=n[(n—11(n-2)3.2.]]=n {(n-1}
Thus, we can compute n! by computing (n - 1)! and
multiplying the result by n. If we add the stipulation that
1!'is equal to 1, this observation translates directly into a
procedure:

(define (factorial n)
(if (=n1)
1

(* n (factorial (- n 1)))))

We can use the substitution model of section 1.1.5 to
watch this procedure in action computing 6!, as shown in
figure 1.3.

Now let's take a different perspective on computing
factorials. We could describe a rule for computing n! by
specifying that we first multiply 1 by 2, then multiply the
result by 3, then by 4, and so on until we reach n. More
formally, we maintain a running product, together with a
counter that counts from 1 up to n. We can describe the
computation by saying that the counter and the product
simultaneously change from one step to the next according
to the rule

product .— counter - product
counter .— counter + 1

and stipulating that n! is the value of the product when the
counter exceeds n.

Figure 1.4: A linear iterative process for computing 6!.

(factorial &)

ffact—iter 1 1 &)
ffact—iter 1 Z &)
ffact—iter 2 3 &)

(fact—iter G
(fact—iter Z4
(fact—iter 120
(fact—iter TZ0

720
Once again, we can recast our description as a procedure

for computing factorials:*

63
63
63
63

=~ h M = W B

(define (factorial n)
(fact-iter 1 1 n))

(define (fact-iter product counter max-count)

29 In a real program we would probably use the block structure introduced
in the last section to hide the definition of fact-iter:

(if (> counter max-count)
pr oduct
(fact-iter (* counter product)

(+ counter 1)

max-count)))

As before, we can use the substitution model to visualize
the process of computing 6!, as shown in figure 1.4.

Compare the two processes. From one point of view,
they seem hardly different at all. Both compute the same
mathematical function on the same domain, and each
requires a number of steps proportional to n to compute
nl. Indeed, both processes even carry out the same
sequence of multiplications, obtaining the same sequence
of partial products. On the other hand, when we consider
the "shapes" of the two processes, we find that they evolve
quite differently.

Consider the first process. The substitution model reveals
a shape of expansion followed by contraction, indicated
by the arrow in figure 1.3. The expansion occurs as the
process builds up a chain of deferred operations (in this
case, a chain of multiplications). The contraction occurs
as the operations are actually performed. This type of
process, characterized by a chain of deferred operations,
is called a recursive process. Carrying out this process
requires that the interpreter keep track of the operations to
be performed later on. In the computation of n!, the length of

the chain of deferred multiplications, and hence the amount
of information needed to keep track of it, grows linearly with
n (is proportional to n), just like the number of steps. Such
a process is called a linear recursive process.

By contrast, the second process does not grow and shrink.
At each step, all we need to keep track of, for any n, are
the current values of the variables product, counter, and
max- count . We call this an iterative process. In general, an
iterative process is one whose state can be summarized by
a fixed number of state variables, together with a fixed rule
that describes how the state variables should be updated
as the process moves from state to state and an (optional)
end test that specifies conditions under which the process
should terminate. In computing n!, the number of steps
required grows linearly with n. Such a process is called a
linear iterative process.

The contrast between the two processes can be seen in
another way. In the iterative case, the program variables
provide a complete description of the state of the process
at any point. If we stopped the computation between
steps, all we would need to do to resume the computation
is to supply the interpreter with the values of the three
program variables. Not so with the recursive process. In
this case there is some additional "hidden" information,
maintained by the interpreter and not contained in the
program variables, which indicates "where the process is"

in negotiating the chain of deferred operations. The longer
the chain, the more information must be maintained.*

In contrasting iteration and recursion, we must be careful
not to confuse the notion of a recursive process with the
notion of a recursive procedure. When we describe a
procedure as recursive, we are referring to the syntactic
fact that the procedure definition refers (either directly or
indirectly) to the procedure itself. But when we describe
a process as following a pattern that is, say, linearly
recursive, we are speaking about how the process evolves,
not about the syntax of how a procedure is written. It may
seem disturbing that we refer to a recursive procedure
such as fact-iter as generating an iterative process.
However, the process really is iterative: Its state is captured
completely by its three state variables, and an interpreter
need keep track of only three variables in order to execute
the process.

One reason that the distinction between process and
procedure may be confusing is that most implementations
of common languages (including Ada, Pascal, and C)
are designed in such a way that the interpretation of
any recursive procedure consumes an amount of memory

30 When we discuss the implementation of procedures on register
machines in chapter 5, we will see that any iterative process can be
realized "in hardware" as a machine that has a fixed set of registers and
no auxiliary memory. In contrast, realizing a recursive process requires a
machine that uses an auxiliary data structure known as a stack.

that grows with the number of procedure calls, even
when the process described is, in principle, iterative. As
a consequence, these languages can describe iterative
processes only by resorting to special-purpose "looping
constructs" such as do, repeat, until, for, and whi | e. The
implementation of Scheme we shall consider in chapter 5
does not share this defect. It will execute an iterative
process in constant space, even if the iterative process
is described by a recursive procedure. An implementation
with this property is called tail-recursive. With a tail-
recursive implementation, iteration can be expressed using
the ordinary procedure call mechanism, so that special

iteration constructs are useful only as syntactic sugar.**

Exercise 1.9. Each of the following two procedures defines
a method for adding two positive integers in terms of the
procedures i nc, which increments its argument by 1, and
dec, which decrements its argument by 1.
(define (+ a b)
(if (=ao0)
b

31 Tail recursion has long been known as a compiler optimization trick.
A coherent semantic basis for tail recursion was provided by Carl Hewitt
(1977), who explained it in terms of the "message-passing" model of
computation that we shall discuss in chapter 3. Inspired by this, Gerald
Jay Sussman and Guy Lewis Steele Jr. (see Steele 1975) constructed
a tail-recursive interpreter for Scheme. Steele later showed how tail
recursion is a consequence of the natural way to compile procedure calls
(Steele 1977). The IEEE standard for Scheme requires that Scheme
implementations be tail-recursive.

(inc (+ (dec a) b))))

(define (+ a b)
(if (= a0
b
(+ (dec a) (inc b))))

Using the substitution model, illustrate the process
generated by each procedure in evaluating (+ 4 5). Are
these processes iterative or recursive?

Exercise 1.10. The following procedure computes a
mathematical function called Ackermann's function.

(define (A x vy)
(cond ((=y 0) 0)
((=x0) (* 2vy))

((=y 1) 2
(else (A (- x 1)
(AXx (-y 1)))))

What are the values of the following expressions?
(A1 10)

(A2 4)

(A3 3)

Consider the following procedures, where A is the
procedure defined above:

(define (f n) (A0 n))

(define (g n) (A1 n))
(define (h n) (A2 n))

(define (k n) (* 5 nn))

Give concise mathematical definitions for the functions
computed by the procedures f, g, and h for positive integer

values of n. For example, (k n) computes 5n°.
1.2.2 Tree Recursion

Another common pattern of computation is called tree
recursion. As an example, consider computing the
sequence of Fibonacci numbers, in which each number is
the sum of the preceding two:

0,1,1,2,3, 5813 21
In general, the Fibonacci numbers can be defined by the
rule

0 dn=10
Fib(n) = 1 dn=1

Fib{rn — 1} + Fib{n — 2} otherwise
We can immediately translate this definition into a recursive
procedure for computing Fibonacci numbers:

(define (fib n)
(cond ((=n 0) 0)
((=n1) 1

(else (+ (fib (- n 1))

(fib (- n 2))))))

Figure 1.5: The tree-recursive process generated in computing (fi b
5).

fib & :
fib % fib 3
fib 2 £ib 1
f:Lb 2
fib Z !
/ \ / \ % (fib 1) |fib 0 1
fib 2 fib 1} [£fib 1] | fib 0

£ib 1} |fib 0 1 1 o
Y1 0

Consider the pattern of this computation. To compute (fib
5), we compute (fib 4) and (fib 3). To compute (fib 4),
we compute (fib 3) and (fib 2). In general, the evolved
process looks like a tree, as shown in figure 1.5. Notice
that the branches split into two at each level (except at the

bottom); this reflects the fact that the fi b procedure calls
itself twice each time it is invoked.

This procedure is instructive as a prototypical tree
recursion, but it is a terrible way to compute Fibonacci
numbers because it does so much redundant computation.
Notice in figure 1.5 that the entire computation of (fib 3) --
almost half the work -- is duplicated. In fact, it is not hard to
show that the number of times the procedure will compute
(fib 1) or(fib 0) (the number of leaves in the above tree,
in general) is precisely Fib(n + 1). To get an idea of how
bad this is, one can show that the value of Fib(n) grows
exponentially with n. More precisely (see exercise 1.13),

Fib(n) is the closest integer to #" /5, where

¢ =0(1++5)/2a 16180

is the golden ratio, which satisfies the equation

¢ =¢+1

Thus, the process uses a number of steps that grows
exponentially with the input. On the other hand, the space
required grows only linearly with the input, because we
need keep track only of which nodes are above us in
the tree at any point in the computation. In general, the
number of steps required by a tree-recursive process will
be proportional to the number of nodes in the tree, while the
space required will be proportional to the maximum depth
of the tree.

We can also formulate an iterative process for computing
the Fibonacci numbers. The idea is to use a pair of integers
a and b, initialized to Fib(1) = 1 and Fib(0) = 0, and to
repeatedly apply the simultaneous transformations

a +— a+b

b — @
Itis not hard to show that, after applying this transformation
n times, a and b will be equal, respectively, to Fib(n +
1) and Fib(n). Thus, we can compute Fibonacci numbers
iteratively using the procedure

(define (fib n)
(fib-iter 1 0 n))

(define (fib-iter a b count)
(if (= count 0)
b

(fib-iter (+ a b) a (- count 1))))

This second method for computing Fib(n) is a linear
iteration. The difference in number of steps required by the
two methods -- one linear in n, one growing as fast as Fib(n)
itself -- is enormous, even for small inputs.

One should not conclude from this that tree-recursive
processes are useless. When we consider processes
that operate on hierarchically structured data rather than
numbers, we will find that tree recursion is a natural

and powerful tool.** But even in numerical operations,
tree-recursive processes can be useful in helping us to
understand and design programs. For instance, although
the first fib procedure is much less efficient than the
second one, it is more straightforward, being little more
than a translation into Lisp of the definition of the Fibonacci
sequence. To formulate the iterative algorithm required
noticing that the computation could be recast as an iteration
with three state variables.

Example: Counting change

It takes only a bit of cleverness to come up with the iterative
Fibonacci algorithm. In contrast, consider the following
problem: How many different ways can we make change
of $ 1.00, given half-dollars, quarters, dimes, nickels, and
pennies? More generally, can we write a procedure to
compute the number of ways to change any given amount
of money?

This problem has a simple solution as a recursive
procedure. Suppose we think of the types of coins available
as arranged in some order. Then the following relation
holds:

The number of ways to change amount a using n kinds of
coins equals

32 An example of this was hinted at in section 1.1.3: The interpreter itself
evaluates expressions using a tree-recursive process.

the number of ways to change amount a using all but
the first kind of coin, plus

the number of ways to change amount a - d using all n
kinds of coins, where d is the denomination of the first
kind of coin.

To see why this is true, observe that the ways to make
change can be divided into two groups: those that do
not use any of the first kind of coin, and those that do.
Therefore, the total number of ways to make change for
some amount is equal to the number of ways to make
change for the amount without using any of the first kind of
coin, plus the number of ways to make change assuming
that we do use the first kind of coin. But the latter number is
equal to the number of ways to make change for the amount
that remains after using a coin of the first kind.

Thus, we can recursively reduce the problem of changing
a given amount to the problem of changing smaller
amounts using fewer kinds of coins. Consider this reduction
rule carefully, and convince yourself that we can use
it to describe an algorithm if we specify the following

degenerate cases:>

If a is exactly 0, we should count that as 1 way to make
change.

33 For example, work through in detail how the reduction rule applies to
the problem of making change for 10 cents using pennies and nickels.

If a is less than 0, we should count that as 0 ways to
make change.

If nis 0, we should count that as 0 ways to make
change.

We can easily translate this description into a recursive
procedure:

(define (count-change anpunt)
(cc anpbunt 5))
(define (cc amount ki nds-of - coi ns)
(cond ((= anpbunt 0) 1)
((or (< amount 0) (= kinds-of-coins 0)) 0)
(el se (+ (cc anpunt
(- kinds-of-coins 1))
(cc (- anount
(first-denom nation ki nds- of -coi ns))

ki nds-of-coins)))))

(define (first-denom nation ki nds-of -coins)
(cond ((= kinds-of-coins 1) 1)

((= kinds-of-coins 2) 5)
((= kinds-of-coins 3) 10)
((= kinds-of-coins 4) 25)

((= kinds-of-coins 5) 50)))

(The first-denonmination procedure takes as input the
number of kinds of coins available and returns the
denomination of the first kind. Here we are thinking of the
coins as arranged in order from largest to smallest, but any
order would do as well.) We can now answer our original
question about changing a dollar:

(count - change 100)
292

Count - change generates a tree-recursive process with
redundancies similar to those in our first implementation of
fi b. (It will take quite a while for that 292 to be computed.)
On the other hand, it is not obvious how to design a
better algorithm for computing the result, and we leave
this problem as a challenge. The observation that a tree-
recursive process may be highly inefficient but often easy
to specify and understand has led people to propose that
one could get the best of both worlds by designing a "smart
compiler" that could transform tree-recursive procedures
into more efficient procedures that compute the same

result.®

34 One approach to coping with redundant computations is to arrange
matters so that we automatically construct a table of values as they are
computed. Each time we are asked to apply the procedure to some
argument, we first look to see if the value is already stored in the table,
in which case we avoid performing the redundant computation. This
strategy, known as tabulation or memoization, can be implemented in
a straightforward way. Tabulation can sometimes be used to transform
processes that require an exponential number of steps (such as count-

Exercise 1.11. A function f is defined by the rule that f(n)
=nif n<3 and f(n) = f(n - 1) + 2f(n - 2) + 3f(n - 3) if n> 3.
Write a procedure that computes f by means of a recursive
process. Write a procedure that computes f by means of an
iterative process.

Exercise 1.12. The following pattern of numbers is called
Pascal's triangle.

1
11
1 21
1 331
1 46 11

The numbers at the edge of the triangle are all 1, and each
number inside the triangle is the sum of the two numbers
above it.*® Write a procedure that computes elements of
Pascal's triangle by means of a recursive process.

change) into processes whose space and time requirements grow linearly
with the input. See exercise 3.27.

35 The elements of Pascal's triangle are called the binomial coefficients,
because the nth row consists of the coefficients of the terms in the
expansion of (x + y)n. This pattern for computing the coefficients
appeared in Blaise Pascal's 1653 seminal work on probability theory,
Traité du triangle arithmétique. According to Knuth (1973), the same
pattern appears in the Szu-yuen Yu-chien ("The Precious Mirror of the

Exercise 1.13. Prove that Fib(n) is the closest integer to
2"+'5, where # = (1 + +/5)/2. Hint: Let¥ = (1 - ¥/5)/2. Use
induction and the definition of the Fibonacci numbers (see

section 1.2.2) to prove that Fib(n) = (&" - £")A/5.
1.2.3 Orders of Growth

The previous examples illustrate that processes can
differ considerably in the rates at which they consume
computational resources. One convenient way to describe
this difference is to use the notion of order of growth to
obtain a gross measure of the resources required by a
process as the inputs become larger.

Let n be a parameter that measures the size of the problem,
and let R(n) be the amount of resources the process
requires for a problem of size n. In our previous examples
we took n to be the number for which a given function
is to be computed, but there are other possibilities. For
instance, if our goal is to compute an approximation to the
square root of a number, we might take n to be the number
of digits accuracy required. For matrix multiplication we
might take n to be the number of rows in the matrices. In
general there are a number of properties of the problem
with respect to which it will be desirable to analyze a

Four Elements"), published by the Chinese mathematician Chu Shih-
chieh in 1303, in the works of the twelfth-century Persian poet and
mathematician Omar Khayyam, and in the works of the twelfth-century
Hindu mathematician Bhascara Acharya.

given process. Similarly, R(n) might measure the number of
internal storage registers used, the number of elementary
machine operations performed, and so on. In computers
that do only a fixed number of operations at a time, the time
required will be proportional to the number of elementary
machine operations performed.

We say that R(n) has order of growth El(f(n)), written R(n)

= El(f(n)) (pronounced "theta of f(n)"), if there are positive
constants k; and k, independent of n such that

k1 f(m) € B{n) < ks f(n)
for any sufficiently large value of n. (In other words, for large
n, the value R(n) is sandwiched between k;f(n) and k,f(n).)

For instance, with the linear recursive process for
computing factorial described in section 1.2.1 the number
of steps grows proportionally to the input n. Thus, the steps

required for this process grows as E‘(n). We also saw that
the space required grows as El(n). For the iterative factorial,
the number of steps is still El(n) but the space is El(l) -- that
is, constant.*® The tree-recursive Fibonacci computation

36 These statements mask a great deal of oversimplification. For instance,
if we count process steps as "machine operations" we are making the
assumption that the number of machine operations needed to perform,
say, a multiplication is independent of the size of the numbers to be
multiplied, which is false if the numbers are sufficiently large. Similar
remarks hold for the estimates of space. Like the design and description

requires E'(l?f?'") steps and space El(n), where & is the golden
ratio described in section 1.2.2.

Orders of growth provide only a crude description of the
behavior of a process. For example, a process requiring n’
steps and a process requiring 1000n” steps and a process

requiring 3n> + 10n + 17 steps all have E(n?) order of
growth. On the other hand, order of growth provides a
useful indication of how we may expect the behavior of the
process to change as we change the size of the problem.

For a E'(n) (linear) process, doubling the size will roughly
double the amount of resources used. For an exponential
process, each increment in problem size will multiply the
resource utilization by a constant factor. In the remainder
of section 1.2 we will examine two algorithms whose order
of growth is logarithmic, so that doubling the problem size
increases the resource requirement by a constant amount.

Exercise 1.14. Draw the tree illustrating the process
generated by the count - change procedure of section 1.2.2 in
making change for 11 cents. What are the orders of growth
of the space and number of steps used by this process as
the amount to be changed increases?

of a process, the analysis of a process can be carried out at various levels
of abstraction.

Exercise 1.15. The sine of an angle (specified in radians)
can be computed by making use of the approximation sin
x 7= X if X is sufficiently small, and the trigonometric identity
. A 3 . r
sinr = 3sin — —-LsmE'E
to reduce the size of the argument of si n. (For purposes
of this exercise an angle is considered "sufficiently small” if
its magnitude is not greater than 0.1 radians.) These ideas
are incorporated in the following procedures:

(define (cube x) (* x X X))
(define (p x) (- (* 3 x) (* 4 (cube x))))

(define (sine angle)
(if (not (> (abs angle) 0.1))

angl e

(p (sine (/ angle 3.0)))))
a. How many times is the procedure p applied when (si ne
12. 15) is evaluated?

b. What is the order of growth in space and number of steps
(as a function of a) used by the process generated by the
si ne procedure when (sine a) is evaluated?

1.2.4 Exponentiation

Consider the problem of computing the exponential of a
given number. We would like a procedure that takes as
arguments a base b and a positive integer exponent n

and computes b". One way to do this is via the recursive
definition

bTJ — b . bﬂ—l
=1
which translates readily into the procedure
(define (expt b n)
(if (=n0)
1
(* b (expt b (- n 1)))))
This is a linear recursive process, which requires El(n)
steps and El(n) space. Just as with factorial, we can readily
formulate an equivalent linear iteration:

(define (expt b n)
(expt-iter b n 1))

(define (expt-iter b counter product)
(if (= counter 0)
pr oduct
(expt-iter b
(- counter 1)

(* b product))))

This version requires El(n) steps and El(l) space.

We can compute exponentials in fewer steps by using
successive squaring. For instance, rather than computing

b® as

beib (b (b (b (B (B BN

we can compute it using three multiplications:

B =L b
b—l — b?'b?
B = BB

This method works fine for exponents that are powers of
2. We can also take advantage of successive squaring in
computing exponentials in general if we use the rule

= i:bb-”j? it 2 15 even
tBn=p -l it 2 1z odd

We can express this method as a procedure:

(define (fast-expt b n)

(cond ((=n 0) 1)

((even? n) (square (fast-expt b (/ n 2))))
(else (* b (fast-expt b (- n 1))))))

where the predicate to test whether an integer is even is

defined in terms of the primitive procedure r emai nder by

(define (even? n)
(= (remainder n 2) 0))

The process evolved by fast-expt grows logarithmically
with n in both space and number of steps. To see

this, observe that computing b’ using fast - expt requires

only one more multiplication than computing b". The
size of the exponent we can compute therefore doubles
(approximately) with every new multiplication we are
allowed. Thus, the number of multiplications required for an
exponent of n grows about as fast as the logarithm of n to

the base 2. The process has Ei(I og n) growth.”

The difference between El(l og n) growth and El(n) growth
becomes striking as n becomes large. For example, f ast -

expt for n = 1000 requires only 14 multiplications.*® It is
also possible to use the idea of successive squaring to
devise an iterative algorithm that computes exponentials
with a logarithmic number of steps (see exercise 1.16),
although, as is often the case with iterative algorithms, this
is not written down so straightforwardly as the recursive

algorithm.*

37 More precisely, the number of multiplications required is equal to 1
less than the log base 2 of n plus the number of ones in the binary
representation of n. This total is always less than twice the log base 2 of n.
The arbitrary constants k1 and k2 in the definition of order notation imply
that, for a logarithmic process, the base to which logarithms are taken
does not matter, so all such processes are described as (log n).

38 You may wonder why anyone would care about raising numbers to the
1000th power. See section 1.2.6.

39 This iterative algorithm is ancient. It appears in the Chandah-sutra
by Acharya Pingala, written before 200 B.C. See Knuth 1981, section
4.6.3, for a full discussion and analysis of this and other methods of
exponentiation.

Exercise 1.16. Design a procedure that evolves an
iterative exponentiation process that uses successive
squaring and uses a logarithmic number of steps, as

does fast-expt. (Hint: Using the observation that (b")’

= (b°)", keep, along with the exponent n and the base
b, an additional state variable a, and define the state

transformation in such a way that the product a b" is
unchanged from state to state. At the beginning of the
process a is taken to be 1, and the answer is given by
the value of a at the end of the process. In general, the
technique of defining an invariant quantity that remains
unchanged from state to state is a powerful way to think
about the design of iterative algorithms.)

Exercise 1.17. The exponentiation algorithms in this
section are based on performing exponentiation by means
of repeated multiplication. In a similar way, one can perform
integer multiplication by means of repeated addition. The
following multiplication procedure (in which it is assumed
that our language can only add, not multiply) is analogous
to the expt procedure:

(define (* a b)

(if (=b0)
0

(+a(*a(-b1)))))

This algorithm takes a number of steps that is linear in b.
Now suppose we include, together with addition, operations
doubl e, which doubles an integer, and hal ve, which divides

an (even) integer by 2. Using these, design a multiplication
procedure analogous to f ast - expt that uses a logarithmic
number of steps.

Exercise 1.18. Using the results of exercises 1.16
and 1.17, devise a procedure that generates an iterative
process for multiplying two integers in terms of adding,
doubling, and halving and uses a logarithmic number of

steps.*’

Exercise 1.19. There is a clever algorithm for computing
the Fibonacci numbers in a logarithmic humber of steps.
Recall the transformation of the state variables a and b in
the fib-iter process of section 1.2.2:a.—a+bandb .
a. Call this transformation T, and observe that applying T
over and over again n times, starting with 1 and 0, produces
the pair Fib(n + 1) and Fib(n). In other words, the Fibonacci

numbers are produced by applying T", the nth power of the
transformation T, starting with the pair (1,0). Now consider
T to be the special case of p = 0 and g = 1 in a family
of transformations T,, where T, transforms the pair (a,b)
according to a — bqg + ag + ap and b — bp + aq. Show that
if we apply such a transformation T, twice, the effect is the
same as using a single transformation T, of the same form,

40 This algorithm, which is sometimes known as the "Russian peasant
method" of multiplication, is ancient. Examples of its use are found
in the Rhind Papyrus, one of the two oldest mathematical documents
in existence, written about 1700 B.C. (and copied from an even older
document) by an Egyptian scribe named A'h-mose.

and compute p' and q' in terms of p and g. This gives us
an explicit way to square these transformations, and thus
we can compute T" using successive squaring, as in the
fast-expt procedure. Put this all together to complete the
following procedure, which runs in a logarithmic number of
steps:**

(define (fib n)

(fib-iter 1 001 n))
(define (fib-iter a b p g count)

(cond ((= count 0) b)
((even? count)

(fib-iter a

b

<

??7> ; conmpute p
' < ??7> ; compute ¢
(/count2))) (else (fib-iter (+ (*bq) (*aq) (*ap))
(+(*bp)(*aq)) p q

(- count 1)))))
1.2.5 Greatest Common Divisors

The greatest common divisor (GCD) of two integers a and
b is defined to be the largest integer that divides both a and

41 This exercise was suggested to us by Joe Stoy, based on an example
in Kaldewaij 1990.

b with no remainder. For example, the GCD of 16 and 28
is 4. In chapter 2, when we investigate how to implement
rational-number arithmetic, we will need to be able to
compute GCDs in order to reduce rational numbers to
lowest terms. (To reduce a rational number to lowest terms,
we must divide both the numerator and the denominator by
their GCD. For example, 16/28 reduces to 4/7.) One way to
find the GCD of two integers is to factor them and search
for common factors, but there is a famous algorithm that is
much more efficient.

The idea of the algorithm is based on the observation that, if
r is the remainder when a is divided by b, then the common
divisors of a and b are precisely the same as the common
divisors of b and r. Thus, we can use the equation

GCD(a,b) = GCD(b,7)
to successively reduce the problem of computing a GCD to

the problem of computing the GCD of smaller and smaller
pairs of integers. For example,

GCD(206,40) = GCD(40,6)
GCD(6,4)
GCD(4,2)
GCD(2,0)
1

—_

reduces GCD(206,40) to GCD(2,0), which is 2. It is
possible to show that starting with any two positive integers
and performing repeated reductions will always eventually
produce a pair where the second number is 0. Then the
GCD is the other number in the pair. This method for

computing the GCD is known as Euclid's Algorithm.*

It is easy to express Euclid's Algorithm as a procedure:
(define (gcd a b)
(if (=b o0
a
(gcd b (remminder a b))))

This generates an iterative process, whose number of
steps grows as the logarithm of the numbers involved.

The fact that the number of steps required by Euclid's
Algorithm has logarithmic growth bears an interesting
relation to the Fibonacci numbers:

Lamé's Theorem: If Euclid's Algorithm requires k steps to
compute the GCD of some pair, then the smaller number in

42 Euclid's Algorithm is so called because it appears in Euclid's Elements
(Book 7, ca. 300 B.C.). According to Knuth (1973), it can be considered
the oldest known nontrivial algorithm. The ancient Egyptian method of
multiplication (exercise 1.18) is surely older, but, as Knuth explains,
Euclid's algorithm is the oldest known to have been presented as a general
algorithm, rather than as a set of illustrative examples.

the pair must be greater than or equal to the kth Fibonacci
number.*®
We can use this theorem to get an order-of-growth estimate

for Euclid's Algorithm. Let n be the smaller of the two inputs
to the procedure. If the process takes k steps, then we must

have n> Fib (k) == #*n/5. Therefore the number of steps
k grows as the logarithm (to the base fi’) of n. Hence, the
order of growth is) og n).

43 This theorem was proved in 1845 by Gabriel Lamé, a French
mathematician and engineer known chiefly for his contributions to
mathematical physics. To prove the theorem, we consider pairs (ak ,bk),
where ak> bk, for which Euclid's Algorithm terminates in k steps. The proof
is based on the claim that, if (ak+1, bk+1) (ak, bk) (ak-1, bk-1) are three
successive pairs in the reduction process, then we must have bk+1> bk
+ bk-1. To verify the claim, consider that a reduction step is defined by
applying the transformation ak-1 = bk, bk-1 = remainder of ak divided by
bk. The second equation means that ak = gbk + bk-1 for some positive
integer g. And since q must be at least 1 we have ak = gbk + bk-1 > bk
+ bk-1. But in the previous reduction step we have bk+1 = ak. Therefore,
bk+1 = ak> bk + bk-1. This verifies the claim. Now we can prove the
theorem by induction on k, the number of steps that the algorithm requires
to terminate. The result is true for k = 1, since this merely requires that
b be at least as large as Fib(1) = 1. Now, assume that the result is true
for all integers less than or equal to k and establish the result for k + 1.
Let (ak+1, bk+1) (ak, bk) (ak-1, bk-1) be successive pairs in the reduction
process. By our induction hypotheses, we have bk-1> Fib(k - 1) and bk>
Fib(k). Thus, applying the claim we just proved together with the definition
of the Fibonacci numbers gives bk+1 > bk + bk-1> Fib(k) + Fib(k - 1) =
Fib(k + 1), which completes the proof of Lamé's Theorem.

Exercise 1.20. The process that a procedure generates is
of course dependent on the rules used by the interpreter.
As an example, consider the iterative gcd procedure given
above. Suppose we were to interpret this procedure using
normal-order evaluation, as discussed in section 1.1.5.
(The normal-order-evaluation rule for i f is described in
exercise 1.5.) Using the substitution method (for normal
order), illustrate the process generated in evaluating (gcd
206 40) and indicate the remsi nder operations that are
actually performed. How many rensi nder operations are
actually performed in the normal-order evaluation of (gcd
206 40) ? In the applicative-order evaluation?

1.2.6 Example: Testing for Primality

This section describes two methods for checking the
primality of an integer n, one with order of growth El(v’n),

and a "probabilistic" algorithm with order of growth EI(I og
n). The exercises at the end of this section suggest
programming projects based on these algorithms.

Searching for divisors

Since ancient times, mathematicians have been fascinated
by problems concerning prime numbers, and many people
have worked on the problem of determining ways to test if
numbers are prime. One way to test if a number is prime is
to find the number's divisors. The following program finds
the smallest integral divisor (greater than 1) of a given

number n. It does this in a straightforward way, by testing
n for divisibility by successive integers starting with 2.

(define (smallest-divisor n)
(find-divisor n 2))
(define (find-divisor n test-divisor)

(cond ((> (square test-divisor) n) n)
((divides? test-divisor n) test-divisor)
(el se (find-divisor n (+ test-divisor 1)))))
(define (divides? a b)
(= (remainder b a) 0))

We can test whether a number is prime as follows: n is
prime if and only if n is its own smallest divisor.

(define (prime? n)
(= n (smallest-divisor n)))

The end test for find-di vi sor is based on the fact that if
n is not prime it must have a divisor less than or equal to
v'n.* This means that the algorithm need only test divisors

between 1 and n. Consequently, the number of steps
required to identify n as prime will have order of growth

E+v'n).
The Fermat test

44 If d is a divisor of n, then so is n/d. But d and n/d cannot both be greater
than n.

The £)(1 og) primality test is based on a result from number
theory known as Fermat's Little Theorem.*

Fermat's Little Theorem: If n is a prime number and a is
any positive integer less than n, then a raised to the nth
power is congruent to a modulo n.

(Two numbers are said to be congruent modulo n if they
both have the same remainder when divided by n. The
remainder of a number a when divided by n is also referred
to as the remainder of a modulo n, or simply as a modulo n.)

If nis not prime, then, in general, most of the numbers a<n
will not satisfy the above relation. This leads to the following
algorithm for testing primality: Given a number n, pick a
random number a < n and compute the remainder of a"
modulo n. If the resultis not equal to a, then n is certainly not
prime. If it is a, then chances are good that n is prime. Now

45 Pierre de Fermat (1601-1665) is considered to be the founder of
modern number theory. He obtained many important number-theoretic
results, but he usually announced just the results, without providing his
proofs. Fermat's Little Theorem was stated in a letter he wrote in 1640.
The first published proof was given by Euler in 1736 (and an earlier,
identical proof was discovered in the unpublished manuscripts of Leibniz).
The most famous of Fermat's results -- known as Fermat's Last Theorem
-- was jotted down in 1637 in his copy of the book Arithmetic (by the
third-century Greek mathematician Diophantus) with the remark "I have
discovered a truly remarkable proof, but this margin is too small to contain
it." Finding a proof of Fermat's Last Theorem became one of the most
famous challenges in number theory. A complete solution was finally given
in 1995 by Andrew Wiles of Princeton University.

pick another random number a and test it with the same
method. If it also satisfies the equation, then we can be
even more confident that n is prime. By trying more and
more values of a, we can increase our confidence in the
result. This algorithm is known as the Fermat test.

To implement the Fermat test, we need a procedure that
computes the exponential of a humber modulo another
number:
(define (expnod base exp m
(cond ((= exp 0) 1)
((even? exp)

(remai nder (square (expnod base (/ exp 2) m)

n)

(el se

(remai nder (* base (expnod base (- exp 1) m)
n)))

This is very similar to the fast-expt procedure of
section 1.2.4. It uses successive squaring, so that the

number of steps grows logarithmically with the exponent.”

46 The reduction steps in the cases where the exponent e is greater than
1 are based on the fact that, for any integers x, y, and m, we can find the
remainder of x times y modulo m by computing separately the remainders
of x modulo m and y modulo m, multiplying these, and then taking the
remainder of the result modulo m. For instance, in the case where e is
even, we compute the remainder of be/2 modulo m, square this, and take

The Fermat test is performed by choosing at random a
number a between 1 and n - 1 inclusive and checking
whether the remainder modulo n of the nth power of a
is equal to a. The random number a is chosen using
the procedure random which we assume is included as a
primitive in Scheme. Randomreturns a nonnegative integer
less than its integer input. Hence, to obtain a random
number between 1 and n - 1, we call randomwith an input
of n -1 and add 1 to the result:

(define (fermat-test n)

(define (try-it a)
(= (exprmod a n n) a))

(try-it (+ 1 (random (- n 1)))))

The following procedure runs the test a given number of
times, as specified by a parameter. Its value is true if the
test succeeds every time, and false otherwise.

(define (fast-prime? n tines)
(cond ((=tines 0) true)
((fermat-test n) (fast-prime? n (- tines 1)))
(el se false)))

Probabilistic methods

the remainder modulo m. This technique is useful because it means we
can perform our computation without ever having to deal with numbers
much larger than m. (Compare exercise 1.25.)

The Fermat test differs in character from most familiar
algorithms, in which one computes an answer that is
guaranteed to be correct. Here, the answer obtained is only
probably correct. More precisely, if n ever fails the Fermat
test, we can be certain that n is not prime. But the fact that n
passes the test, while an extremely strong indication, is still
not a guarantee that n is prime. What we would like to say is
that for any number n, if we perform the test enough times
and find that n always passes the test, then the probability
of error in our primality test can be made as small as we
like.

Unfortunately, this assertion is not quite correct. There do
exist numbers that fool the Fermat test: numbers n that are
not prime and yet have the property that a" is congruent to a
modulo n for all integers a < n. Such numbers are extremely
rare, so the Fermat test is quite reliable in practice.*” There
are variations of the Fermat test that cannot be fooled.
In these tests, as with the Fermat method, one tests the

47 Numbers that fool the Fermat test are called Carmichael numbers,
and little is known about them other than that they are extremely rare.
There are 255 Carmichael numbers below 100,000,000. The smallest few
are 561, 1105, 1729, 2465, 2821, and 6601. In testing primality of very
large numbers chosen at random, the chance of stumbling upon a value
that fools the Fermat test is less than the chance that cosmic radiation
will cause the computer to make an error in carrying out a "correct"
algorithm. Considering an algorithm to be inadequate for the first reason
but not for the second illustrates the difference between mathematics and
engineering.

primality of an integer n by choosing a random integer a<n
and checking some condition that depends upon n and a.
(See exercise 1.28 for an example of such a test.) On the
other hand, in contrast to the Fermat test, one can prove
that, for any n, the condition does not hold for most of the
integers a<n unless n is prime. Thus, if n passes the test
for some random choice of a, the chances are better than
even that n is prime. If n passes the test for two random
choices of a, the chances are better than 3 out of 4 that n
is prime. By running the test with more and more randomly
chosen values of a we can make the probability of error as
small as we like.

The existence of tests for which one can prove that the
chance of error becomes arbitrarily small has sparked
interest in algorithms of this type, which have come to be
known as probabilistic algorithms. There is a great deal of
research activity in this area, and probabilistic algorithms

have been fruitfully applied to many fields.*

48 One of the most striking applications of probabilistic prime testing
has been to the field of cryptography. Although it is now computationally
infeasible to factor an arbitrary 200-digit number, the primality of such
a number can be checked in a few seconds with the Fermat test. This
fact forms the basis of a technique for constructing "unbreakable codes"
suggested by Rivest, Shamir, and Adleman (1977). The resulting RSA
algorithm has become a widely used technique for enhancing the security
of electronic communications. Because of this and related developments,
the study of prime numbers, once considered the epitome of a topic in
"pure” mathematics to be studied only for its own sake, now turns out

Exercise 1.21. Usethe smal | est - di vi sor procedure to find
the smallest divisor of each of the following numbers: 199,
1999, 19999.

Exercise 1.22. Most Lisp implementations include a
primitive called runtinme that returns an integer that
specifies the amount of time the system has been running
(measured, for example, in microseconds). The following
ti med- prime-test procedure, when called with an integer
n, prints n and checks to see if n is prime. If n is prime, the
procedure prints three asterisks followed by the amount of
time used in performing the test.
(define (timed-prinme-test n)

(new i ne)

(di splay n)

(start-prime-test n (runtine)))
(define (start-prime-test n start-tine)

(if (prime? n)

(report-prime (- (runtinme) start-tinme))))

(define (report-prinme el apsed-tine)

(display " *** ")

(di splay el apsed-tine))
Using this procedure, write a procedure sear ch-f or - pri nes
that checks the primality of consecutive odd integers in
a specified range. Use your procedure to find the three
smallest primes larger than 1000; larger than 10,000; larger
than 100,000; larger than 1,000,000. Note the time needed

to have important practical applications to cryptography, electronic funds
transfer, and information retrieval.

to test each prime. Since the testing algorithm has order
of growth of El(v’n), you should expect that testing for

primes around 10,000 should take about +'10 times as
long as testing for primes around 1000. Do your timing
data bear this out? How well do the data for 100,000

and 1,000,000 support the vn prediction? Is your result
compatible with the notion that programs on your machine
run in time proportional to the number of steps required for
the computation?

Exercise 1.23. The snmal |l est - di vi sor procedure shown
at the start of this section does lots of needless testing:
After it checks to see if the number is divisible by 2 there
is no point in checking to see if it is divisible by any larger
even numbers. This suggests that the values used for t est -
di vi sor should notbe 2, 3, 4,5, 6, ..., butrather 2, 3,5, 7,
9,Toimplement this change, define a procedure next
that returns 3 if its input is equal to 2 and otherwise returns
its input plus 2. Modify the snal | est - di vi sor procedure to
use (next test-divisor) instead of (+ test-divisor 1).
With ti med- pri ne-test incorporating this modified version
of smal | est - di vi sor, run the test for each of the 12 primes
found in exercise 1.22. Since this modification halves the
number of test steps, you should expect it to run about twice
as fast. Is this expectation confirmed? If not, what is the
observed ratio of the speeds of the two algorithms, and how
do you explain the fact that it is different from 27?

Exercise 1.24. Modify the ti med- pri ne-test procedure of
exercise 1.22 to use f ast - pri ne? (the Fermat method), and
test each of the 12 primes you found in that exercise. Since

the Fermat test has EI(I og h) growth, how would you expect
the time to test primes near 1,000,000 to compare with the
time needed to test primes near 1000? Do your data bear
this out? Can you explain any discrepancy you find?

Exercise 1.25. Alyssa P. Hacker complains that we went
to a lot of extra work in writing exprod. After all, she says,
since we already know how to compute exponentials, we
could have simply written

(define (expnod base exp m
(remai nder (fast-expt base exp) m)

Is she correct? Would this procedure serve as well for our
fast prime tester? Explain.

Exercise 1.26. Louis Reasoner is having great difficulty
doing exercise 1.24. His fast-prinme? test seems to run
more slowly than his pri ne? test. Louis calls his friend Eva
Lu Ator over to help. When they examine Louis's code, they
find that he has rewritten the expnod procedure to use an
explicit multiplication, rather than calling square:
(define (expnod base exp m

(cond ((= exp 0) 1)

((even? exp)

(remai nder (* (expnod base (/ exp 2) m

(expnod base (/ exp 2) m)

m)

(el se
(renmmi nder (* base (expnod base (- exp 1) m)

m)))

"I don't see what difference that could make," says Louis. "l
do." says Eva. "By writing the procedure like that, you have
transformed the El(l og N) process into a E'(n) process."
Explain.

Exercise 1.27. Demonstrate that the Carmichael numbers
listed in footnote *' really do fool the Fermat test. That is,
write a procedure that takes an integer n and tests whether
a" is congruent to a modulo n for every a<n, and try your
procedure on the given Carmichael numbers.

Exercise 1.28. One variant of the Fermat test that cannot
be fooled is called the Miller-Rabin test (Miller 1976; Rabin
1980). This starts from an alternate form of Fermat's Little

47 Numbers that fool the Fermat test are called Carmichael numbers,
and little is known about them other than that they are extremely rare.
There are 255 Carmichael numbers below 100,000,000. The smallest few
are 561, 1105, 1729, 2465, 2821, and 6601. In testing primality of very
large numbers chosen at random, the chance of stumbling upon a value
that fools the Fermat test is less than the chance that cosmic radiation
will cause the computer to make an error in carrying out a "correct"
algorithm. Considering an algorithm to be inadequate for the first reason
but not for the second illustrates the difference between mathematics and
engineering.

Theorem, which states that if n is a prime number and a
is any positive integer less than n, then a raised to the
(n - 1)st power is congruent to 1 modulo n. To test the
primality of a number n by the Miller-Rabin test, we pick
a random number a<n and raise a to the (n - 1)st power
modulo n using the exprod procedure. However, whenever
we perform the squaring step in exprod, we check to see |f
we have discovered a "nontrivial square root of 1 modulo n,"
that is, a number not equal to 1 or n - 1 whose square is
equal to 1 modulo n. It is possible to prove that if such a
nontrivial square root of 1 exists, then n is not prime. It is
also possible to prove that if n is an odd number that is not

prime, then, for at least half the numbers a<n, computing a"
in this way will reveal a nontrivial square root of 1 modulo n.
(This is why the Miller-Rabin test cannot be fooled.) Modify
the expnod procedure to signal if it discovers a nontrivial
square root of 1, and use this to implement the Miller-Rabin
test with a procedure analogous to fermat-test. Check
your procedure by testing various known primes and non-
primes. Hint: One convenient way to make expnod signal is
to have it return 0.

1.3 Formulating Abstractions
with Higher-Order Procedures

We have seen that procedures are, in effect,
abstractions that describe compound operations on

numbers independent of the particular numbers. For
example, when we

(define (cube x) (* x X X))

we are not talking about the cube of a particular number,
but rather about a method for obtaining the cube of any
number. Of course we could get along without ever defining
this procedure, by always writing expressions such as

(* 333)

(* X X Xx)

(*yyy

and never mentioning cube explicitly. This would place
us at a serious disadvantage, forcing us to work always
at the level of the particular operations that happen
to be primitives in the language (multiplication, in this
case) rather than in terms of higher-level operations.
Our programs would be able to compute cubes, but our
language would lack the ability to express the concept
of cubing. One of the things we should demand from
a powerful programming language is the ability to build
abstractions by assigning names to common patterns
and then to work in terms of the abstractions directly.
Procedures provide this ability. This is why all but the most
primitive programming languages include mechanisms for
defining procedures.

Yet even in numerical processing we will be severely limited
in our ability to create abstractions if we are restricted to
procedures whose parameters must be numbers. Often

the same programming pattern will be used with a number
of different procedures. To express such patterns as
concepts, we will need to construct procedures that can
accept procedures as arguments or return procedures
as values. Procedures that manipulate procedures are
called higher-order procedures. This section shows how
higher-order procedures can serve as powerful abstraction
mechanisms, vastly increasing the expressive power of our
language.

1.3.1 Procedures as Arguments
Consider the following three procedures. The first
computes the sum of the integers from a through b:
(define (sumintegers a b)
(if (> ab)
0
(+ a (sumintegers (+ a 1) b))))

The second computes the sum of the cubes of the integers
in the given range:
(define (sumcubes a b)
(if (> ab)
0
(+ (cube a) (sumcubes (+ a 1) b))))

The third computes the sum of a sequence of terms in the
series

1 1 1

T ate s gL

which converges to 7T/8 (very slowly):*

(define (pi-suma b)
(if (> ab)
0

(+(/ 1.0 (* a(+a?2))) (pi-sum(+ a 4) b))))

These three procedures clearly share a common
underlying pattern. They are for the most part identical,
differing only in the name of the procedure, the function of
a used to compute the term to be added, and the function
that provides the next value of a. We could generate each
of the procedures by filling in slots in the same template:

(define (<name> a b)
(if (> ahb)
0

(+ (<ternmr a)

(<nane> (<
next> a) b))))
The presence of such a common pattern is strong evidence
that there is a useful abstraction waiting to be brought to
the surface. Indeed, mathematicians long ago identified the
abstraction of summation of a series and invented "sigma
notation," for example

49 This series, usually written in the equivalent form (/4) = 1 - (1/3) + (1/5)
- (1/7) + -, is due to Leibniz. We'll see how to use this as the basis for
some fancy numerical tricks in section 3.5.3.

b

> fm)=fl@) + o+ F(b)

=
to express this concept. The power of sigma notation is
that it allows mathematicians to deal with the concept of
summation itself rather than only with particular sums -- for
example, to formulate general results about sums that are
independent of the particular series being summed.

Similarly, as program designers, we would like our
language to be powerful enough so that we can write a
procedure that expresses the concept of summation itself
rather than only procedures that compute particular sums.
We can do so readily in our procedural language by taking
the common template shown above and transforming the
"slots" into formal parameters:

(define (sumterma next b)
(if (»ahb)
0

(+ (terma)
(sumterm (next a) next b))))
Notice that sumtakes as its arguments the lower and upper
bounds a and b together with the procedures term and
next . We can use sumjust as we would any procedure. For
example, we can use it (along with a procedure inc that
increments its argument by 1) to define sum cubes:

(define (inc n) (+ n 1))

(define (sumcubes a b)

(sum cube a inc b))

Using this, we can compute the sum of the cubes of the
integers from 1 to 10:

(sum cubes 1 10)
3025

With the aid of an identity procedure to compute the term,
we can define sum i nt egers in terms of sum

(define (identity x) x)
(define (sumintegers a b)
(sumidentity a inc b))
Then we can add up the integers from 1 to 10:

(sumintegers 1 10)
55

We can also define pi - sumin the same way:*

(define (pi-suma b)
(define (pi-termx)
(/ 1.0 (* x (+ x 2))))

(define (pi-next x)
(+ x 4))
(sumpi-terma pi-next b))

50 Notice that we have used block structure (section 1.1.8) to embed the
definitions of pi-next and pi-term within pi-sum, since these procedures
are unlikely to be useful for any other purpose. We will see how to get rid
of them altogether in section 1.3.2.

Using these procedures, we can compute an approximation
to 4T

(* 8 (pi-sum1 1000))

3. 139592655589783

Once we have sum we can use it as a building block
in formulating further concepts. For instance, the definite
integral of a function f between the limits a and b can be
approximated numerically using the formula

Cd d d
ff= [f(a.+TI)+f(a.+dr+TI)+f(a.+2dr+TI)+---] d
for small values of dx. We can express this directly as a
procedure:
(define (integral f a b dx)

(define (add-dx x) (+ x dx))
(* (sumf (+ a (/ dx 2.0)) add-dx b)

dx))
(integral cube 0 1 0.01)
. 24998750000000042
(integral cube 0 1 0.001)
. 249999875000001

(The exact value of the integral of cube between 0 and 1
is 1/4.)

Exercise 1.29. Simpson's Rule is a more accurate method
of numerical integration than the method illustrated above.

Using Simpson's Rule, the integral of a function f between
a and b is approximated as

k.
E[Hﬂ“‘-’:m + 0+ b+ 2+ e b

where h = (b - a)/n, for some even integer n, and
vi = f(@ + kh). (Increasing n increases the accuracy
of the approximation.) Define a procedure that takes
as arguments f, a, b, and n and returns the value of
the integral, computed using Simpson's Rule. Use your
procedure to integrate cube between 0 and 1 (with n =100
and n = 1000), and compare the results to those of the
i ntegral procedure shown above.

Exercise 1.30. The sum procedure above generates a
linear recursion. The procedure can be rewritten so that the
sum is performed iteratively. Show how to do this by filling
in the missing expressions in the following definition:
(define (sumterma next b)
(define (iter a result)
(if <??2>
<??7>

(iter <??> <
??7>)))
(iter <??> <?7>))
Exercise 1.31. a. The sumprocedure is only the simplest
of a vast number of similar abstractions that can be

captured as higher-order procedures.” Write an analogous
procedure called product that returns the product of the
values of a function at points over a given range. Show how
to define fact ori al interms of product . Also use product to

compute approximations to AT using the formula®

7 241668 .

1 33557
b. If your product procedure generates arecursive process,
write one that generates an iterative process. If it generates
an iterative process, write one that generates a recursive
process.

Exercise 1.32. a. Show that sum and product
(exercise 1.31) are both special cases of a still more
general notion called accumul at e that combines a collection
of terms, using some general accumulation function:

51 The intent of exercises 1.31-1.33 is to demonstrate the expressive
power that is attained by using an appropriate abstraction to consolidate
many seemingly disparate operations. However, though accumulation
and filtering are elegant ideas, our hands are somewhat tied in using
them at this point since we do not yet have data structures to provide
suitable means of combination for these abstractions. We will return to
these ideas in section 2.2.3 when we show how to use sequences as
interfaces for combining filters and accumulators to build even more
powerful abstractions. We will see there how these methods really come
into their own as a powerful and elegant approach to designing programs.
52 This formula was discovered by the seventeenth-century English
mathematician John Wallis.

(accurul ate conbi ner null-value terma next b)

Accunul at e takes as arguments the same term and range
specifications as sumand pr oduct , together with a conbi ner
procedure (of two arguments) that specifies how the current
term is to be combined with the accumulation of the
preceding terms and a nul | - val ue that specifies what base
value to use when the terms run out. Write accumul at e and
show how sumand product can both be defined as simple
calls to accunul ate.

b. If your accumul ate procedure generates a recursive
process, write one that generates an iterative process. If it
generates an iterative process, write one that generates a
recursive process.

Exercise 1.33. You can obtain an even more general
version of accumul ate (exercise 1.32) by introducing the
notion of a filter on the terms to be combined. That is,
combine only those terms derived from values in the range
that satisfy a specified condition. The resulting il tered-
accunul ate abstraction takes the same arguments as
accumulate, together with an additional predicate of
one argument that specifies the filter. Write filtered-
accunul ate as a procedure. Show how to express the
following using fi | t er ed- accumul at e:

a. the sum of the squares of the prime numbers in the
interval a to b (assuming that you have a pri ne? predicate
already written)

b. the product of all the positive integers less than n that
are relatively prime to n (i.e., all positive integers i < n such
that GCD(i,n) = 1).

1.3.2 Constructing Procedures Using
Lambda

In using sumas in section 1.3.1, it seems terribly awkward
to have to define trivial procedures such as pi - t er mand pi -
next just so we can use them as arguments to our higher-
order procedure. Rather than define pi - next and pi -t erm it
would be more convenient to have a way to directly specify
"the procedure that returns its input incremented by 4" and
"the procedure that returns the reciprocal of its input times
its input plus 2." We can do this by introducing the special
form | ambda, which creates procedures. Using | anbda we
can describe what we want as

(lanbda (x) (+ x 4))
and
(lanbda (x) (/ 1.0 (* x (+ x 2))))

Then our pi-sum procedure can be expressed without
defining any auxiliary procedures as

(define (pi-suma b)
(sum (lambda (x) (/ 1.0 (* x (+ x 2))))

a
(lanbda (x) (+ x 4))

b))

Again using | anbda, we can write the i ntegral procedure
without having to define the auxiliary procedure add- dx:

(define (integral f a b dx)

(* (sumf
(+a (/ dx 2.0))

(lambda (x) (+ x dx))
b)
dx))

In general, | anbda is used to create procedures in the same
way as define, except that no name is specified for the
procedure:

(I anbda (<fornal - paraneters>) <body>)

The resulting procedure is just as much a procedure as one
that is created using define. The only difference is that it
has not been associated with any name in the environment.
In fact,

(define (plus4 x) (+ x 4))
is equivalent to
(define plus4 (lanbda (x) (+ x 4)))
We can read a | anbda expression as follows:
(1 ambda (x) (+ X 4))

T T [|
the procedure of an argunent
X thatadds x and 4

Like any expression that has a procedure as its value,
a | anbda expression can be used as the operator in a
combination such as

((lambda (x y z) (+ x y (square z))) 1 2 3)

12

or, more generally, in any context where we would normally
use a procedure name.”®

Using let to create local variables

Another use of | anmbda is in creating local variables. We
often need local variables in our procedures other than
those that have been bound as formal parameters. For
example, suppose we wish to compute the function

Fry) =r(1+ry) +u(l—) + (14 ry)(1 —]

53 It would be clearer and less intimidating to people learning Lisp if a
name more obvious than lambda, such as make-procedure, were used.
But the convention is firmly entrenched. The notation is adopted from
the calculus, a mathematical formalism introduced by the mathematical
logician Alonzo Church (1941). Church developed the calculus to provide
a rigorous foundation for studying the notions of function and function
application. The calculus has become a basic tool for mathematical
investigations of the semantics of programming languages.

which we could also express as
g = 14+ ry
b 1 —y
flr,y) = ra®+ yb+ ab

In writing a procedure to compute f, we would like to
include as local variables not only x and y but also the
names of intermediate quantities like a and b. One way to
accomplish this is to use an auxiliary procedure to bind the
local variables:
(define (f x vy)

(define (f-helper a b)
(+ (* x (square a))

(* y b
(* ab)))
(f-helper (+ 1 (* xvVy))
(- 1y)))

Of course, we could use a | anhda expression to specify an
anonymous procedure for binding our local variables. The
body of f then becomes a single call to that procedure:

(define (f x vy)

((lambda (a b)
(+ (* x (square a))

(* y b

(* ab)))

(+1(*xvy)

(- 1y)))
This construct is so useful that there is a special form called
l et to make its use more convenient. Using Il et, the f
procedure could be written as
(define (f x vy)

(let ((a (+ 1 (* xVy)))

(b (- 1y)))

(+ (* x (square a))

(* y b)
(* ab))))

The general form of a | et expression is

(let ((<vari> <exp
1>)

(<vary> <
exp2>)

.(<var > <
expn>))
<body>)
which can be thought of as saying

let <varl> have the value
<expl>and
<var2> have the value
<exp2> and

<varn> have the value
<expn>
in <body>
The first part of the et expression is a list of name-
expression pairs. When the | et is evaluated, each name is
associated with the value of the corresponding expression.
The body of the | et is evaluated with these names bound
as local variables. The way this happens is that the | et
expression is interpreted as an alternate syntax for

((lanbda (<var1> ..<var,>) <body>) <exp;> : <exp,>)

No new mechanism is required in the interpreter in order to
provide local variables. Al et expression is simply syntactic
sugar for the underlying | anbda application.

We can see from this equivalence that the scope of a
variable specified by a I et expression is the body of the
| et . This implies that:

Let allows one to bind variables as locally as possible
to where they are to be used. For example, if the value
of x is 5, the value of the expression

(+ (et ((x 3))
(+ x (* x 10)))

x)

is 38. Here, the x in the body of the | et is 3, so the value
of the I et expression is 33. On the other hand, the x that
is the second argument to the outermost + is still 5.

The variables' values are computed outside the | et .
This matters when the expressions that provide the
values for the local variables depend upon variables
having the same names as the local variables
themselves. For example, if the value of x is 2, the

expression
(let ((x 3)
(y (+x2)))

(" xy))
will have the value 12 because, inside the body of the
I et, x will be 3 and y will be 4 (which is the outer x plus 2).

Sometimes we can use internal definitions to get the same
effect as with | et . For example, we could have defined the
procedure f above as

(define (f x vy)
(define a (+ 1 (* x y)))

(define b (- 1))
(+ (* x (square a))
(* y b
(* ab)))

We prefer, however, to use | et in situations like this and to
use internal def i ne only for internal procedures.>
Exercise 1.34. Suppose we define the procedure
(define (f g)

(9 2))
Then we have

(f square)
4

(f (lambda (z) (* z (+ z 1))))
6

What happens if we (perversely) ask the interpreter to
evaluate the combination (f) ? Explain.

1.3.3 Procedures as General Methods

We introduced compound procedures in section 1.1.4
as a mechanism for abstracting patterns of numerical
operations so as to make them independent of the
particular numbers involved. With higher-order procedures,
such as theintegral procedure of section 1.3.1, we began
to see a more powerful kind of abstraction: procedures

54 Understanding internal definitions well enough to be sure a program
means what we intend it to mean requires a more elaborate model of the
evaluation process than we have presented in this chapter. The subtleties
do not arise with internal definitions of procedures, however. We will return
to this issue in section 4.1.6, after we learn more about evaluation.

used to express general methods of computation,
independent of the particular functions involved. In this
section we discuss two more elaborate examples -- general
methods for finding zeros and fixed points of functions --
and show how these methods can be expressed directly as
procedures.

Finding roots of equations by the half-
interval method

The half-interval method is a simple but powerful technique
for finding roots of an equation f(x) = 0, where f is a
continuous function. The idea is that, if we are given points
a and b such that f(a) < 0 < f(b), then f must have at least
one zero between a and b. To locate a zero, let x be the
average of a and b and compute f(x). If f(x) > 0, then f
must have a zero between a and x. If f(x) < 0, then f must
have a zero between x and b. Continuing in this way, we
can identify smaller and smaller intervals on which f must
have a zero. When we reach a point where the interval
is small enough, the process stops. Since the interval of
uncertainty is reduced by half at each step of the process,

the number of steps required grows as £)(1 og(L/T)), where
L is the length of the original interval and T is the error
tolerance (that is, the size of the interval we will consider
"small enough"). Here is a procedure that implements this
strategy:

(define (search f neg-point pos-point)

(let ((m dpoint (average neg-point pos-point)))
(if (cl ose-enough? neg-point pos-point)

m dpoi nt
(let ((test-value (f mdpoint)))

(cond ((positive? test-value)
(search f neg-point mdpoint))

((negative? test-val ue)
(search f midpoint pos-point))

(else midpoint))))))

We assume that we are initially given the function f together
with points at which its values are negative and positive.
We first compute the midpoint of the two given points. Next
we check to see if the given interval is small enough, and if
so we simply return the midpoint as our answer. Otherwise,
we compute as a test value the value of f at the midpoint. If
the test value is positive, then we continue the process with
a new interval running from the original negative point to
the midpoint. If the test value is negative, we continue with
the interval from the midpoint to the positive point. Finally,
there is the possibility that the test value is 0, in which case
the midpoint is itself the root we are searching for.

To test whether the endpoints are "close enough" we can
use a procedure similar to the one used in section 1.1.7 for

computing square roots:”

(define (cl ose-enough? x y)

(< (abs (- x y)) 0.001))
Search is awkward to use directly, because we can
accidentally give it points at which f's values do not have
the required sign, in which case we get a wrong answer.
Instead we will use search via the following procedure,
which checks to see which of the endpoints has a negative
function value and which has a positive value, and calls
the sear ch procedure accordingly. If the function has the
same sign on the two given points, the half-interval method
cannot be used, in which case the procedure signals an

error.”®

(define (half-interval -method f a b)

(let ((a-value (f a))
(b-value (f b)))

(cond ((and (negative? a-val ue) (positive? b-value))

55 We have used 0.001 as a representative "small" number to indicate
a tolerance for the acceptable error in a calculation. The appropriate
tolerance for a real calculation depends upon the problem to be solved and
the limitations of the computer and the algorithm. This is often a very subtle
consideration, requiring help from a numerical analyst or some other kind
of magician.

56 This can be accomplished using error, which takes as arguments a
number of items that are printed as error messages.

(search f a b))

((and (negative? b-value) (positive? a-value))
(search f b a))
(el se

(error "Values are not of opposite sign" a

The following example uses the half-interval method to
approximate AT as the root between 2 and 4 of sin x = 0:

(hal f-interval -method sin 2.0 4.0)
3.14111328125

Here is another example, using the half-interval method to

search for a root of the equation x° - 2x - 3 = 0 between
1 and 2:

(hal f-interval -method (lanbda (x) (- (* x X X) (* 2 x)
1.0
2.0)
1. 89306640625
Finding fixed points of functions

A number x is called a fixed point of a function f if x satisfies
the equation f(x) = x. For some functions f we can locate a
fixed point by beginning with an initial guess and applying
f repeatedly,

flz), SO, FUFLFLEND,

until the value does not change very much. Using this
idea, we can devise a procedure fi xed- poi nt that takes
as inputs a function and an initial guess and produces an
approximation to a fixed point of the function. We apply
the function repeatedly until we find two successive values
whose difference is less than some prescribed tolerance:

(define tol erance 0.00001)
(define (fixed-point f first-guess)

(define (close-enough? vl v2)
(< (abs (- vl v2)) tolerance))

(define (try guess)
(let ((next (f guess)))

(if (cl ose-enough? guess next)
next

(try next))))
(try first-guess))

For example, we can use this method to approximate the
fixed point of the cosine function, starting with 1 as an initial
approximation:*’

(fixed-point cos 1.0)

57 Try this during a boring lecture: Set your calculator to radians mode
and then repeatedly press the cos button until you obtain the fixed point.

. 7390822985224023

Similarly, we can find a solution to the equation y =siny
+cosy:

(fixed-point (lanmbda (y) (+ (siny) (cos y)))
1.0)

1.2587315962971173

The fixed-point process is reminiscent of the process we
used for finding square roots in section 1.1.7. Both are
based on the idea of repeatedly improving a guess until
the result satisfies some criterion. In fact, we can readily
formulate the square-root computation as a fixed-point
search. Computing the square root of some number x

requires finding a y such that y* = x. Putting this equation
into the equivalent form y = x/y, we recognize that we are
looking for a fixed point of the function®® y — x/y, and we
can therefore try to compute square roots as

(define (sgrt x)
(fixed-point (lanbda (y) (/ x vy))

1.0))

Unfortunately, this fixed-point search does not converge.
Consider an initial guess y,;. The next guess is y, = x/y; and
the next guess is y; = x/y, = x/(X/y,) = y;. This results in an

58 (pronounced "maps to") is the mathematician's way of writing lambda.
y X/y means (lambda(y) (/ x y)), that is, the function whose value aty is x/y.

infinite loop in which the two guesses y,; and y, repeat over
and over, oscillating about the answer.

One way to control such oscillations is to prevent the
guesses from changing so much. Since the answer is
always between our guess y and x/y, we can make a hew
guess that is not as far from y as x/y by averaging y with
xly, so that the next guess aftery is (1/2)(y + x/y) instead of
xly. The process of making such a sequence of guesses is
simply the process of looking for a fixed point of y —+ (1/2)
(y + xly):

(define (sqrt x)
(fixed-point (lanmbda (y) (average y (/ x Vy)))

1.0))

(Note that y = (1/2)(y + x/y) is a simple transformation of
the equation y = x/y; to derive it, add y to both sides of the
equation and divide by 2.)

With this modification, the square-root procedure works.
In fact, if we unravel the definitions, we can see that the
sequence of approximations to the square root generated
here is precisely the same as the one generated by
our original square-root procedure of section 1.1.7. This
approach of averaging successive approximations to a
solution, a technique we that we call average damping,
often aids the convergence of fixed-point searches.

Exercise 1.35. Show that the golden ratio b (section 1.2.2)
is a fixed point of the transformation x — 1 + 1/x, and

use this fact to compute i by means of the fi xed- poi nt
procedure.

Exercise 1.36. Modify fixed-point so that it prints the
sequence of approximations it generates, using the new i ne
and di spl ay primitives shown in exercise 1.22. Then find

a solution to x* = 1000 by finding a fixed point of X
| 0g(1000)/1 og(x). (Use Scheme's primitive | og procedure,
which computes natural logarithms.) Compare the number
of steps this takes with and without average damping. (Note
that you cannot start fi xed- poi nt with a guess of 1, as this
would cause division by |1 og(1) = 0.)

Exercise 1.37. a. An infinite continued fraction is an
expression of the form

Ny
Dyt

As an example, one can show that the infinite continued
fraction expansion with the N; and the D; all equal to

1 produces 1/%, where & is the golden ratio (described
in section 1.2.2). One way to approximate an infinite
continued fraction is to truncate the expansion after a given
number of terms. Such a truncation -- a so-called k-term
finite continued fraction -- has the form

D+

Suppose that n and d are procedures of one argument (the
term index i) that return the N; and D; of the terms of the
continued fraction. Define a procedure cont - f r ac such that
evaluating (cont-frac n d k) computes the value of the
k-term finite continued fraction. Check your procedure by

approximating 1/ using

(cont-frac (lanbda (i) 1.0)
(lambda (i) 1.0)

k)

for successive values of k. How large must you make k in
order to get an approximation that is accurate to 4 decimal
places?

b. If your cont-frac procedure generates a recursive
process, write one that generates an iterative process. If it
generates an iterative process, write one that generates a
recursive process.

Exercise 1.38. In 1737, the Swiss mathematician
Leonhard Euler published a memoir De Fractionibus
Continuis, which included a continued fraction expansion
for e - 2, where e is the base of the natural logarithms. In

this fraction, the N; are all 1, and the D; are successively 1,
2,1,1,4,1,1,6,1,1,8,....Write aprogram that uses your
cont - frac procedure from exercise 1.37 to approximate e,
based on Euler's expansion.

Exercise 1.39. A continued fraction representation of the
tangent function was published in 1770 by the German
mathematician J.H. Lambert:

tanr = 3

B — .

where x is in radians. Define a procedure (tan-cf x k) that
computes an approximation to the tangent function based
on Lambert's formula. K specifies the number of terms to
compute, as in exercise 1.37.

1.3.4 Procedures as Returned Values

The above examples demonstrate how the ability to
pass procedures as arguments significantly enhances
the expressive power of our programming language.
We can achieve even more expressive power by
creating procedures whose returned values are themselves
procedures.

We can illustrate this idea by looking again at the fixed-
point example described at the end of section 1.3.3. We

formulated a new version of the square-root procedure as

a fixed-point search, starting with the observation that VX is
a fixed-point of the function y — x/y. Then we used average
damping to make the approximations converge. Average
damping is a useful general technique in itself. Namely,
given a function f, we consider the function whose value at
X is equal to the average of x and f(x).

We can express the idea of average damping by means of
the following procedure:

(define (average-danp f)

(lambda (x) (average x (f x))))

Aver age- danp iS a procedure that takes as its argument a
procedure f and returns as its value a procedure (produced
by the | anbda) that, when applied to a number x, produces
the average of x and (f x) . For example, applying aver age-
danp to the squar e procedure produces a procedure whose

value at some number x is the average of x and x°. Applying
this resulting procedure to 10 returns the average of 10 and
100, or 55:*°

((aver age-danp square) 10)
55

59 Observe that this is a combination whose operator is itself a
combination. Exercise 1.4 already demonstrated the ability to form such
combinations, but that was only a toy example. Here we begin to see
the real need for such combinations -- when applying a procedure that is
obtained as the value returned by a higher-order procedure.

Using aver age-danp, we can reformulate the square-root
procedure as follows:

(define (sgrt x)
(fixed-point (average-danp (lanbda (y) (/ x vy)))

1.0))

Notice how this formulation makes explicit the three ideas in
the method: fixed-point search, average damping, and the
function y — x/y. Itis instructive to compare this formulation
of the square-root method with the original version given in
section 1.1.7. Bear in mind that these procedures express
the same process, and notice how much clearer the idea
becomes when we express the process in terms of these
abstractions. In general, there are many ways to formulate
a process as a procedure. Experienced programmers know
how to choose procedural formulations that are particularly
perspicuous, and where useful elements of the process are
exposed as separate entities that can be reused in other
applications. As a simple example of reuse, notice that the

cube root of x is a fixed point of the function y —+ x/y’, so
we can immediately generalize our square-root procedure

to one that extracts cube roots:®

(define (cube-root x)
(fixed-point (average-danp (lanbda (y) (/ x (square

1.0))

60 See exercise 1.45 for a further generalization.

Newton's method

When we first introduced the square-root procedure, in
section 1.1.7, we mentioned that this was a special case
of Newton's method. If x — g(x) is a differentiable function,
then a solution of the equation g(x) = 0 is a fixed point of
the function x i— f(X) where

flri=r-— glz)

Dg(x)
and Dg(x) is the derivative of g evaluated at x. Newton's
method is the use of the fixed-point method we saw above
to approximate a solution of the equation by finding a
fixed point of the function .** For many functions g and
for sufficiently good initial guesses for x, Newton's method

converges very rapidly to a solution of g(x) = 0.
In order to implement Newton's method as a procedure,

we must first express the idea of derivative. Note that
"derivative," like average damping, is something that

61 Elementary calculus books usually describe Newton's method in terms
of the sequence of approximations xn+1 = xn - g(xn)/Dg(xn). Having
language for talking about processes and using the idea of fixed points
simplifies the description of the method.

62 Newton's method does not always converge to an answer, but it can be
shown that in favorable cases each iteration doubles the number-of-digits
accuracy of the approximation to the solution. In such cases, Newton's
method will converge much more rapidly than the half-interval method.

transforms a function into another function. For instance,
the derivative of the function x — x’ is the function x — 3x°.
In general, if g is a function and dx is a small number, then
the derivative Dg of g is the function whose value at any
number x is given (in the limit of small dx) by

(r+dr) —g{r)
Dg(x) =% . £

Thus, we can express the idea of derivative (taking dx to
be, say, 0.00001) as the procedure

(define (deriv g)
(lambda (x)
(7 (- (g (+ x dx)) (g x))
dx)))
along with the definition

(define dx 0.00001)
Like average-danp, deriv is a procedure that takes a
procedure as argument and returns a procedure as value.

For example, to approximate the derivative of x — X’ at 5
(whose exact value is 75) we can evaluate

(define (cube x) (* x x x))

((deriv cube) 5)
75.00014999664018

With the aid of deri v, we can express Newton's method as
a fixed-point process:

(define (newton-transform g)
(lambda (x)
(- x (/ (g x) ((deriv g) x)))))

(define (newt ons-nmethod g guess)

(fixed-point (newton-transformg) guess))

The newt on- t ransf or mprocedure expresses the formula at
the beginning of this section, and new ons- net hod is readily
defined in terms of this. It takes as arguments a procedure
that computes the function for which we want to find a
zero, together with an initial guess. For instance, to find the
square root of x, we can use Newton's method to find a

zero of the function y — y* - x starting with an initial guess

of 1.* This provides yet another form of the square-root
procedure:

(define (sqgrt x)
(newt ons-nethod (lanbda (y) (- (square y) x))
1.0))
Abstractions and first-class procedures

We've seen two ways to express the square-root
computation as an instance of a more general method,
once as a fixed-point search and once using Newton's
method. Since Newton's method was itself expressed as a

63 For finding square roots, Newton's method converges rapidly to the
correct solution from any starting point.

fixed-point process, we actually saw two ways to compute
square roots as fixed points. Each method begins with a
function and finds a fixed point of some transformation of
the function. We can express this general idea itself as a
procedure:

(define (fixed-point-of-transformg transform guess)

(fixed-point (transformg) guess))

This very general procedure takes as its arguments a
procedure g that computes some function, a procedure that
transforms g, and an initial guess. The returned result is a
fixed point of the transformed function.

Using this abstraction, we can recast the first square-root
computation from this section (where we look for a fixed
point of the average-damped version of y — x/y) as an
instance of this general method:

(define (sqgrt x)
(fixed-point-of-transform (lanbda (y) (/ x vy))

aver age- danp

1.0))

Similarly, we can express the second square-root
computation from this section (an instance of Newton's
method that finds a fixed point of the Newton transform of
Y — Y’ - X) as

(define (sgrt x)
(fixed-point-of-transform (lanbda (y) (- (square y)

newt on-transform

1.0))

We began section 1.3 with the observation that compound
procedures are a crucial abstraction mechanism, because
they permit us to express general methods of computing as
explicit elements in our programming language. Now we've
seen how higher-order procedures permit us to manipulate
these general methods to create further abstractions.

As programmers, we should be alert to opportunities to
identify the underlying abstractions in our programs and
to build upon them and generalize them to create more
powerful abstractions. This is not to say that one should
always write programs in the most abstract way possible;
expert programmers know how to choose the level of
abstraction appropriate to their task. But it is important to
be able to think in terms of these abstractions, so that
we can be ready to apply them in new contexts. The
significance of higher-order procedures is that they enable
us to represent these abstractions explicitly as elements in
our programming language, so that they can be handled
just like other computational elements.

In general, programming languages impose restrictions
on the ways in which computational elements can be
manipulated. Elements with the fewest restrictions are

said to have first-class status. Some of the "rights and
privileges" of first-class elements are:*

They may be named by variables.
They may be passed as arguments to procedures.

They may be returned as the results of procedures.

They may be included in data structures.®

Lisp, unlike other common programming languages,
awards procedures full first-class status. This poses
challenges for efficient implementation, but the resulting

gain in expressive power is enormous.®

Exercise 1.40. Define a procedure cubi ¢ that can be used
together with the newt ons- met hod procedure in expressions
of the form

(newt ons-nethod (cubic a b c) 1)

to approximate zeros of the cubic x* + ax’ + bx + c.

64 The notion of first-class status of programming-language elements is
due to the British computer scientist Christopher Strachey (1916-1975).
65 We'll see examples of this after we introduce data structures in
chapter 2.
66 The major implementation cost of first-class procedures is that allowing
procedures to be returned as values requires reserving storage for a
procedure's free variables even while the procedure is not executing. In
the Scheme implementation we will study in section 4.1, these variables
are stored in the procedure's environment.

Exercise 1.41. Define a procedure doubl e that takes a
procedure of one argument as argument and returns a
procedure that applies the original procedure twice. For
example, if i nc is a procedure that adds 1 to its argument,
then (doubl e i nc) should be a procedure that adds 2. What
value is returned by

(((doubl e (doubl e double)) inc) 5)

Exercise 1.42. Letfand g be two one-argument functions.
The composition f after g is defined to be the function
X — f(g(x)). Define a procedure conpose that implements
composition. For example, if i nc is a procedure that adds
1 to its argument,

((conpose square inc) 6)

49

Exercise 1.43. Iffis a numerical function and n is a positive
integer, then we can form the nth repeated application of
f, which is defined to be the function whose value at X is
f(f(. . . (f(x)). . .)). For example, if f is the function X — X +
1, then the nth repeated application of f is the function x 1~
X + n. If f is the operation of squaring a number, then the
nth repeated application of f is the function that raises its

argument to the 2"th power. Write a procedure that takes as
inputs a procedure that computes f and a positive integer n
and returns the procedure that computes the nth repeated
application of f. Your procedure should be able to be used
as follows:

((repeated square 2) 5)

625

Hint: You may find it convenient to use conpose from
exercise 1.42.

Exercise 1.44. The idea of smoothing a function is an
important concept in signal processing. If f is a function and
dx is some small number, then the smoothed version of f
is the function whose value at a point x is the average of
f(x - dx), f(x), and f(x + dx). Write a procedure smoot h that
takes as input a procedure that computes f and returns a
procedure that computes the smoothed f. It is sometimes
valuable to repeatedly smooth a function (that is, smooth
the smoothed function, and so on) to obtained the n-
fold smoothed function. Show how to generate the n-fold
smoothed function of any given function using smoot h and
r epeat ed from exercise 1.43.

Exercise 1.45. We saw in section 1.3.3 that attempting
to compute square roots by naively finding a fixed point
of y =+ x/y does not converge, and that this can be fixed
by average damping. The same method works for finding

cube roots as fixed points of the average-damped y — xIy’.
Unfortunately, the process does not work for fourth roots
-- a single average damp is not enough to make a fixed-
point search for y — x/y* converge. On the other hand,
if we average damp twice (i.e., use the average damp of
the average damp of y — x/y°) the fixed-point search does
converge. Do some experiments to determine how many
average damps are required to compute nth roots as a

fixed-point search based upon repeated average damping

of y — x/y". Use this to implement a simple procedure for
computing nth roots using fi xed- poi nt, aver age- danp, and
the r epeat ed procedure of exercise 1.43. Assume that any
arithmetic operations you need are available as primitives.

Exercise 1.46. Several of the numerical methods
described in this chapter are instances of an extremely
general computational strategy known as iterative
improvement. Iterative improvement says that, to compute
something, we start with an initial guess for the answer,
test if the guess is good enough, and otherwise improve
the guess and continue the process using the improved
guess as the new guess. Write a procedure iterative-
i npr ove that takes two procedures as arguments: a method
for telling whether a guess is good enough and a method
for improving a guess. Iterati ve-i nprove should return as
its value a procedure that takes a guess as argument and
keeps improving the guess until it is good enough. Rewrite
the sqrt procedure of section 1.1.7 and the fi xed- poi nt
procedure of section 1.3.3 in terms of i terati ve-i npr ove.

Chapter 2

Building Abstractions with Data

We now come to the decisive step of
mathematical abstraction: we forget about what
the symbols stand for. ...[The mathematician]
need not be idle; there are many operations which
he may carry out with these symbols, without ever
having to look at the things they stand for.

Hermann Weyl, The Mathematical Way of
Thinking

We concentrated in chapter 1 on computational processes
and on the role of procedures in program design. We
saw how to use primitive data (numbers) and primitive
operations (arithmetic operations), how to combine
procedures to form compound procedures through
composition, conditionals, and the use of parameters, and
how to abstract procedures by using define. We saw
that a procedure can be regarded as a pattern for the
local evolution of a process, and we classified, reasoned
about, and performed simple algorithmic analyses of
some common patterns for processes as embodied in
procedures. We also saw that higher-order procedures
enhance the power of our language by enabling us to
manipulate, and thereby to reason in terms of, general

methods of computation. This is much of the essence of
programming.

In this chapter we are going to look at more complex data.
All the procedures in chapter 1 operate on simple numerical
data, and simple data are not sufficient for many of the
problems we wish to address using computation. Programs
are typically designed to model complex phenomena, and
more often than not one must construct computational
objects that have several parts in order to model real-world
phenomena that have several aspects. Thus, whereas
our focus in chapter 1 was on building abstractions by
combining procedures to form compound procedures,
we turn in this chapter to another key aspect of any
programming language: the means it provides for building
abstractions by combining data objects to form compound
data.

Why do we want compound data in a programming
language? For the same reasons that we want compound
procedures: to elevate the conceptual level at which we
can design our programs, to increase the modularity of
our designs, and to enhance the expressive power of our
language. Just as the ability to define procedures enables
us to deal with processes at a higher conceptual level than
that of the primitive operations of the language, the ability
to construct compound data objects enables us to deal with
data at a higher conceptual level than that of the primitive
data objects of the language.

Consider the task of designing a system to perform
arithmetic with rational numbers. We could imagine an
operation add-rat that takes two rational numbers and
produces their sum. In terms of simple data, a rational
number can be thought of as two integers: a numerator and
a denominator. Thus, we could design a program in which
each rational number would be represented by two integers
(a numerator and a denominator) and where add- rat would
be implemented by two procedures (one producing the
numerator of the sum and one producing the denominator).
But this would be awkward, because we would then need to
explicitly keep track of which numerators corresponded to
which denominators. In a system intended to perform many
operations on many rational numbers, such bookkeeping
details would clutter the programs substantially, to say
nothing of what they would do to our minds. It would be
much better if we could "glue together" a numerator and
denominator to form a pair -- a compound data object --
that our programs could manipulate in a way that would
be consistent with regarding a rational number as a single
conceptual unit.

The use of compound data also enables us to increase the
modularity of our programs. If we can manipulate rational
numbers directly as objects in their own right, then we can
separate the part of our program that deals with rational
numbers per se from the details of how rational numbers
may be represented as pairs of integers. The general
technique of isolating the parts of a program that deal

with how data objects are represented from the parts of
a program that deal with how data objects are used is a
powerful design methodology called data abstraction. We
will see how data abstraction makes programs much easier
to design, maintain, and modify.

The use of compound data leads to a real increase in the
expressive power of our programming language. Consider
the idea of forming a "linear combination" ax + by. We might
like to write a procedure that would accept a, b, x, and y as
arguments and return the value of ax + by. This presents
no difficulty if the arguments are to be numbers, because
we can readily define the procedure

(define (linear-conbination a b x y)

(+ (*ax) (* by)))
But suppose we are not concerned only with numbers.
Suppose we would like to express, in procedural terms,
the idea that one can form linear combinations whenever
addition and multiplication are defined -- for rational
numbers, complex numbers, polynomials, or whatever. We
could express this as a procedure of the form

(define (linear-conbination a b x y)

(add (mul a x) (mul b y)))

where add and nul are not the primitive procedures +
and * but rather more complex things that will perform
the appropriate operations for whatever kinds of data we
pass in as the arguments a, b, x, and y. The key point

is that the only thing 1i near - conbi nati on should need to
know about a, b, x, and y is that the procedures add
and mul will perform the appropriate manipulations. From
the perspective of the procedure | i near - conbi nati on, it is
irrelevant what a, b, x, and y are and even more irrelevant
how they might happen to be represented in terms of
more primitive data. This same example shows why it
is important that our programming language provide the
ability to manipulate compound objects directly: Without
this, there is no way for a procedure such as Iinear-
conbi nation to pass its arguments along to add and

mul without having to know their detailed structure.' We
begin this chapter by implementing the rational-number
arithmetic system mentioned above. This will form the
background for our discussion of compound data and data
abstraction. As with compound procedures, the main issue
to be addressed is that of abstraction as a technique

1 The ability to directly manipulate procedures provides an analogous
increase in the expressive power of a programming language. For
example, in section 1.3.1 we introduced the sum procedure, which takes
a procedure term as an argument and computes the sum of the values of
term over some specified interval. In order to define sum, it is crucial that
we be able to speak of a procedure such as term as an entity in its own
right, without regard for how term might be expressed with more primitive
operations. Indeed, if we did not have the notion of "a procedure," it is
doubtful that we would ever even think of the possibility of defining an
operation such as sum. Moreover, insofar as performing the summation is
concerned, the details of how term may be constructed from more primitive
operations are irrelevant.

for coping with complexity, and we will see how data
abstraction enables us to erect suitable abstraction barriers
between different parts of a program.

We will see that the key to forming compound data is that a
programming language should provide some kind of "glue”
so that data objects can be combined to form more complex
data objects. There are many possible kinds of glue.
Indeed, we will discover how to form compound data using
no special "data" operations at all, only procedures. This
will further blur the distinction between "procedure" and
"data," which was already becoming tenuous toward the
end of chapter 1. We will also explore some conventional
techniques for representing sequences and trees. One
key idea in dealing with compound data is the notion
of closure -- that the glue we use for combining data
objects should allow us to combine not only primitive
data objects, but compound data objects as well. Another
key idea is that compound data objects can serve as
conventional interfaces for combining program modules in
mix-and-match ways. We illustrate some of these ideas
by presenting a simple graphics language that exploits
closure.

We will then augment the representational power of our
language by introducing symbolic expressions -- data
whose elementary parts can be arbitrary symbols rather
than only numbers. We explore various alternatives for
representing sets of objects. We will find that, just as
a given numerical function can be computed by many

different computational processes, there are many ways in
which a given data structure can be represented in terms
of simpler objects, and the choice of representation can
have significant impact on the time and space requirements
of processes that manipulate the data. We will investigate
these ideas in the context of symbolic differentiation, the
representation of sets, and the encoding of information.

Next we will take up the problem of working with data
that may be represented differently by different parts of
a program. This leads to the need to implement generic
operations, which must handle many different types of
data. Maintaining modularity in the presence of generic
operations requires more powerful abstraction barriers than
can be erected with simple data abstraction alone. In
particular, we introduce data-directed programming as a
technique that allows individual data representations to
be designed in isolation and then combined additively
(i.e., without modification). To illustrate the power of this
approach to system design, we close the chapter by
applying what we have learned to the implementation
of a package for performing symbolic arithmetic on
polynomials, in which the coefficients of the polynomials
can be integers, rational numbers, complex numbers, and
even other polynomials.

2.1 Introduction to Data
Abstraction

In section 1.1.8, we noted that a procedure used as an
element in creating a more complex procedure could be
regarded not only as a collection of particular operations
but also as a procedural abstraction. That is, the details of
how the procedure was implemented could be suppressed,
and the particular procedure itself could be replaced by any
other procedure with the same overall behavior. In other
words, we could make an abstraction that would separate
the way the procedure would be used from the details of
how the procedure would be implemented in terms of more
primitive procedures. The analogous notion for compound
data is called data abstraction. Data abstraction is a
methodology that enables us to isolate how a compound
data object is used from the details of how it is constructed
from more primitive data objects.

The basic idea of data abstraction is to structure the
programs that are to use compound data objects so that
they operate on "abstract data." That is, our programs
should use data in such a way as to make no assumptions
about the data that are not strictly necessary for performing
the task at hand. At the same time, a "concrete" data
representation is defined independent of the programs that
use the data. The interface between these two parts of our

system will be a set of procedures, called selectors and
constructors, that implement the abstract data in terms of
the concrete representation. To illustrate this technique,
we will consider how to design a set of procedures for
manipulating rational numbers.

2.1.1 Example: Arithmetic Operations for
Rational Numbers

Suppose we want to do arithmetic with rational numbers.
We want to be able to add, subtract, multiply, and divide
them and to test whether two rational numbers are equal.

Let us begin by assuming that we already have a way
of constructing a rational number from a numerator and
a denominator. We also assume that, given a rational
number, we have a way of extracting (or selecting) its
numerator and its denominator. Let us further assume that
the constructor and selectors are available as procedures:

(make-rat <n> <d>) returns the rational number whose
numerator is the integer <n> and whose denominator is
the integer <d>.

(nurmer <x>) returns the numerator of the rational
number <x>.

(denom <x>) returns the denominator of the rational
number <x>.

We are using here a powerful strategy of synthesis: wishful
thinking. We haven't yet said how a rational number is

represented, or how the procedures nuner , denom and nake-
rat should be implemented. Even so, if we did have these
three procedures, we could then add, subtract, multiply,
divide, and test equality by using the following relations:

. e Rqda + nady

dy * dy d 1tz
o My nyds —ady
dy dy d1ds
iy e yfo
d dy dids

Lrxl .-':l'ii Lrr ti-'_:

a2 I."d'_: dlﬂij
174 122

— =+ o and only if nydz = nady
'il 2
We can express these rules as procedures:

(define (add-rat x y)
(make-rat (+ (* (numer x) (denomy))

(* (nuner y) (denomx)))
(* (denom x) (denomy))))

(define (sub-rat x y)
(make-rat (- (* (numer x) (denomy))

(* (numer y) (denomx)))
(* (denom x) (denomy))))

(define (mul-rat x vy)
(make-rat (* (nuner x) (numer y))

(* (denom x) (denomy))))

(define (div-rat x vy)
(make-rat (* (nuner x) (denomy))

(* (denom x) (nuner y))))

(define (equal -rat? x y)
(= (* (numer x) (denomy))

(* (numer y) (denomx))))

Now we have the operations on rational numbers defined
in terms of the selector and constructor procedures nuner,
denom and meke-rat. But we haven't yet defined these.
What we need is some way to glue together a numerator
and a denominator to form a rational number.

Pairs

To enable us to implement the concrete level of our data
abstraction, our language provides a compound structure
called a pair, which can be constructed with the primitive
procedure cons. This procedure takes two arguments and
returns a compound data object that contains the two
arguments as parts. Given a pair, we can extract the parts

using the primitive procedures car and cdr.” Thus, we can
use cons, car, and cdr as follows:

(define x (cons 1 2))

(car x)
1

(cdr x)

2

Notice that a pair is a data object that can be given a name
and manipulated, just like a primitive data object. Moreover,

cons can be used to form pairs whose elements are pairs,
and so on:

(define x (cons 1 2))
(define y (cons 3 4))
(define z (cons x y))

(car (car z))
1

(car (cdr z))
3

2 The name cons stands for "construct." The names car and cdr derive
from the original implementation of Lisp on the IBM 704. That machine
had an addressing scheme that allowed one to reference the "address"
and "decrement" parts of a memory location. Car stands for "Contents
of Address part of Register" and cdr (pronounced "could-er") stands for
"Contents of Decrement part of Register."

In section 2.2 we will see how this ability to combine pairs
means that pairs can be used as general-purpose building
blocks to create all sorts of complex data structures.
The single compound-data primitive pair, implemented by
the procedures cons, car, and cdr, is the only glue we
need. Data objects constructed from pairs are called list-
structured data.

Representing rational numbers

Pairs offer a natural way to complete the rational-number
system. Simply represent a rational number as a pair of two
integers: a numerator and a denominator. Then neke-rat ,

nurer , and denomare readily implemented as follows:*

(define (make-rat n d) (cons n d))

(define (numer x) (car x))

(define (denomx) (cdr x))

Also, in order to display the results of our computations,
we can print rational numbers by printing the numerator, a

slash, and the denominator:*
(define (print-rat x)

3 Another way to define the selectors and constructor is

4 Display is the Scheme primitive for printing data. The Scheme primitive
newline starts a new line for printing. Neither of these procedures returns
a useful value, so in the uses of print-rat below, we show only what print-
rat prints, not what the interpreter prints as the value returned by print-rat.

(new i ne)

(display (nuner x))
(display "/")

(di splay (denom x)))

Now we can try our rational-number procedures:

(define one-half (make-rat 1 2))

(print-rat one-half)
1/ 2

(define one-third (make-rat 1 3))
(print-rat (add-rat one-half one-third))
5/ 6

(print-rat (mul-rat one-half one-third))
1/ 6

(print-rat (add-rat one-third one-third))
6/ 9

As the final example shows, our rational-number
implementation does not reduce rational numbers to lowest
terms. We can remedy this by changing nake-rat. If we
have a gcd procedure like the one in section 1.2.5 that
produces the greatest common divisor of two integers, we
can use gcd to reduce the numerator and the denominator
to lowest terms before constructing the pair:

(define (nake-rat n d)
(et ((g (gcd nd)))
(cons (/ ng) (/ dg))))

Now we have

(print-rat (add-rat one-third one-third))
2/ 3

as desired. This modification was accomplished by
changing the constructor make-rat without changing any
of the procedures (such as add-rat and mul-rat) that
implement the actual operations.

Exercise 2.1. Define a better version of nake-rat that
handles both positive and negative arguments. Make-r at
should normalize the sign so that if the rational number is
positive, both the numerator and denominator are positive,
and if the rational number is negative, only the numerator
is negative.

2.1.2 Abstraction Barriers

Before continuing with more examples of compound
data and data abstraction, let us consider some of the
issues raised by the rational-number example. We defined
the rational-number operations in terms of a constructor
meke-rat and selectors numer and denom In general, the
underlying idea of data abstraction is to identify for each
type of data object a basic set of operations in terms of
which all manipulations of data objects of that type will
be expressed, and then to use only those operations in
manipulating the data.

We can envision the structure of the rational-number
system as shown in figure 2.1. The horizontal lines
represent abstraction barriers that isolate different "levels”

of the system. At each level, the barrier separates the
programs (above) that use the data abstraction from the
programs (below) that implement the data abstraction.
Programs that use rational numbers manipulate them
solely in terms of the procedures supplied "for public use"
by the rational-number package: add-rat , sub-rat, nul -rat,
di v-rat, and equal -rat ?. These, in turn, are implemented
solely in terms of the constructor and selectors neke-rat,
nuner, and denom which themselves are implemented in
terms of pairs. The details of how pairs are implemented
are irrelevant to the rest of the rational-number package
so long as pairs can be manipulated by the use of cons,
car, and cdr. In effect, procedures at each level are the
interfaces that define the abstraction barriers and connect
the different levels.

Figure 2.1: Data-abstraction barriers in the rational-number package.

——| Progmms that use cational numbers ——

Rational numbers in problem domain

add—rat sub—rat

Rational numbers as numerators and denominatocs

—| nake—rat numer dencm l—

Rational numbers as paics

I Cons cac c:-dr:l

However pairs ac implcmcntcd

This simple idea has many advantages. One advantage
is that it makes programs much easier to maintain and to
modify. Any complex data structure can be represented in
a variety of ways with the primitive data structures provided
by a programming language. Of course, the choice of
representation influences the programs that operate on
it; thus, if the representation were to be changed at
some later time, all such programs might have to be
modified accordingly. This task could be time-consuming
and expensive in the case of large programs unless the

dependence on the representation were to be confined by
design to a very few program modules.

For example, an alternate way to address the problem of
reducing rational numbers to lowest terms is to perform
the reduction whenever we access the parts of a rational
number, rather than when we construct it. This leads to
different constructor and selector procedures:

(define (make-rat n d)

(cons n d))
(define (numer x)

(let ((g (gcd (car x) (cdr x))))

(/' (car x) @)))
(define (denom x)

(let ((g (gcd (car x) (cdr x))))

(/ (cdr x) 9)))

The difference between this implementation and the
previous one lies in when we compute the ged. If in our
typical use of rational numbers we access the numerators
and denominators of the same rational numbers many
times, it would be preferable to compute the gcd when
the rational numbers are constructed. If not, we may be
better off waiting until access time to compute the gcd. In
any case, when we change from one representation to the
other, the procedures add-rat, sub-rat, and so on do not
have to be modified at all.

Constraining the dependence on the representation to a
few interface procedures helps us design programs as

well as modify them, because it allows us to maintain
the flexibility to consider alternate implementations. To
continue with our simple example, suppose we are
designing a rational-number package and we can't decide
initially whether to perform the gcd at construction time or
at selection time. The data-abstraction methodology gives
us a way to defer that decision without losing the ability to
make progress on the rest of the system.

Exercise 2.2. Consider the problem of representing line
segments in a plane. Each segment is represented as a
pair of points: a starting point and an ending point. Define a
constructor nake- segnent and selectors start-segment and
end- segnent that define the representation of segments in
terms of points. Furthermore, a point can be represented
as a pair of numbers: the x coordinate and the y coordinate.
Accordingly, specify a constructor meke- poi nt and selectors
x- poi nt and y- poi nt that define this representation. Finally,
using your selectors and constructors, define a procedure
ni dpoi nt - segnent that takes a line segment as argument
and returns its midpoint (the point whose coordinates are
the average of the coordinates of the endpoints). To try your
procedures, you'll need a way to print points:
(define (print-point p)

(new i ne)

(display "(")

(di splay (x-point p))

(display ",")

(di splay (y-point p))

(display ")"))

Exercise 2.3. Implement a representation for rectangles in
a plane. (Hint: You may want to make use of exercise 2.2.)
In terms of your constructors and selectors, create
procedures that compute the perimeter and the area of a
given rectangle. Now implement a different representation
for rectangles. Can you design your system with suitable
abstraction barriers, so that the same perimeter and area
procedures will work using either representation?

2.1.3 What Is Meant by Data?

We began the rational-number implementation in
section 2.1.1 by implementing the rational-number
operations add-rat, sub-rat, and so on in terms of three
unspecified procedures: nake-r at , nuner , and denom At that
point, we could think of the operations as being defined
in terms of data objects -- numerators, denominators, and
rational numbers -- whose behavior was specified by the
latter three procedures.

But exactly what is meant by data? It is not enough
to say "whatever is implemented by the given selectors
and constructors." Clearly, not every arbitrary set of three
procedures can serve as an appropriate basis for the
rational-number implementation. We need to guarantee
that, if we construct a rational number x from a pair of
integers n and d, then extracting the nuner and the denomof
x and dividing them should yield the same result as dividing
n by d. In other words, nake-rat, numer, and denom must

satisfy the condition that, for any integer n and any non-
zero integer d, if x is (make-rat n d), then

{HU.]IIEI“ 3{:] _ Il

(denom x) T d

In fact, this is the only condition make-rat , nuner, and denon
must fulfill in order to form a suitable basis for a rational-
number representation. In general, we can think of data as
defined by some collection of selectors and constructors,
together with specified conditions that these procedures

must fulfill in order to be a valid representation.’

5 Surprisingly, this idea is very difficult to formulate rigorously. There are
two approaches to giving such a formulation. One, pioneered by C. A. R.
Hoare (1972), is known as the method of abstract models. It formalizes
the "procedures plus conditions" specification as outlined in the rational-
number example above. Note that the condition on the rational-number
representation was stated in terms of facts about integers (equality and
division). In general, abstract models define new kinds of data objects
in terms of previously defined types of data objects. Assertions about
data objects can therefore be checked by reducing them to assertions
about previously defined data objects. Another approach, introduced by
Zilles at MIT, by Goguen, Thatcher, Wagner, and Wright at IBM (see
Thatcher, Wagner, and Wright 1978), and by Guttag at Toronto (see
Guttag 1977), is called algebraic specification. It regards the "procedures”
as elements of an abstract algebraic system whose behavior is specified
by axioms that correspond to our "conditions," and uses the techniques
of abstract algebra to check assertions about data objects. Both methods
are surveyed in the paper by Liskov and Zilles (1975).

This point of view can serve to define not only "high-level"
data objects, such as rational numbers, but lower-level
objects as well. Consider the notion of a pair, which we
used in order to define our rational numbers. We never
actually said what a pair was, only that the language
supplied procedures cons, car, and cdr for operating on
pairs. But the only thing we need to know about these three
operations is that if we glue two objects together using
cons We can retrieve the objects using car and cdr. That
is, the operations satisfy the condition that, for any objects
x and vy, if z is (cons x y) then (car z) is x and (cdr z)
is y. Indeed, we mentioned that these three procedures
are included as primitives in our language. However, any
triple of procedures that satisfies the above condition can
be used as the basis for implementing pairs. This point is
illustrated strikingly by the fact that we could implement
cons, car, and cdr without using any data structures at all
but only using procedures. Here are the definitions:
(define (cons x vy)
(define (dispatch m
(cond ((= mO0) x)
((=m1) y)

(else (error "Argument not 0 or 1 -- CONS' m)))
di spat ch)
(define (car z) (z 0))

(define (cdr z) (z 1))

This use of procedures corresponds to nothing like our
intuitive notion of what data should be. Nevertheless, all we
need to do to show that this is a valid way to represent pairs
is to verify that these procedures satisfy the condition given
above.

The subtle point to notice is that the value returned by
(cons x y) is a procedure -- namely the internally defined
procedure di spat ch, which takes one argument and returns
either x or y depending on whether the argument is O or 1.
Correspondingly, (car z) is defined to apply z to 0. Hence,
if z is the procedure formed by (cons x y), then z applied
to 0 will yield x. Thus, we have shown that (car (cons x
y)) Yields x, as desired. Similarly, (cdr (cons x y)) applies
the procedure returned by (cons x y) to 1, which returns y.
Therefore, this procedural implementation of pairs is a valid
implementation, and if we access pairs using only cons, car,
and cdr we cannot distinguish this implementation from one
that uses "real" data structures.

The point of exhibiting the procedural representation of
pairs is not that our language works this way (Scheme,
and Lisp systems in general, implement pairs directly, for
efficiency reasons) but that it could work this way. The
procedural representation, although obscure, is a perfectly
adequate way to represent pairs, since it fulfills the only
conditions that pairs need to fulfill. This example also
demonstrates that the ability to manipulate procedures
as objects automatically provides the ability to represent
compound data. This may seem a curiosity now, but

procedural representations of data will play a central role
in our programming repertoire. This style of programming
is often called message passing, and we will be using it as
a basic tool in chapter 3 when we address the issues of
modeling and simulation.

Exercise 2.4. Here is an alternative procedural
representation of pairs. For this representation, verify that
(car (cons x y)) Yields x for any objects x and y.

(define (cons x y)
(lambda (M (mx y)))

(define (car z)
(z (lanbda (p) p)))

What is the corresponding definition of cdr ? (Hint: To verify
that this works, make use of the substitution model of
section 1.1.5.)

Exercise 2.5. Show that we can represent pairs of
nonnegative integers using only numbers and arithmetic
operations if we represent the pair a and b as the integer

that is the product 2* 3°. Give the corresponding definitions
of the procedures cons, car, and cdr.

Exercise 2.6. In case representing pairs as procedures
wasn't mind-boggling enough, consider that, in a language
that can manipulate procedures, we can get by without
numbers (at least insofar as nonnegative integers are
concerned) by implementing 0 and the operation of adding
1as

(define zero (lanbda (f) (lanbda (x) x)))

(define (add-1 n)
(lambda (f) (lanbda (x) (f ((n f) x)))))

This representation is known as Church numerals, after its

inventor, Alonzo Church, the logician who invented the A
calculus.

Define one and t wo directly (not in terms of zer o and add- 1).
(Hint: Use substitution to evaluate (add-1 zero)). Give a
direct definition of the addition procedure + (not in terms of
repeated application of add- 1).

2.1.4 Extended Exercise: Interval
Arithmetic

Alyssa P. Hacker is designing a system to help people solve
engineering problems. One feature she wants to provide
in her system is the ability to manipulate inexact quantities
(such as measured parameters of physical devices) with
known precision, so that when computations are done with
such approximate quantities the results will be numbers of
known precision.

Electrical engineers will be using Alyssa's system to
compute electrical quantities. It is sometimes necessary
for them to compute the value of a parallel equivalent
resistance R, of two resistors R; and R, using the formula

1
R, = .
PT1/R 4+ 1/Rs

Resistance values are usually known only up to some
tolerance guaranteed by the manufacturer of the resistor.
For example, if you buy a resistor labeled "6.8 ohms with
10% tolerance" you can only be sure that the resistor has
a resistance between 6.8 - 0.68 = 6.12 and 6.8 + 0.68 =
7.48 ohms. Thus, if you have a 6.8-ohm 10% resistor in
parallel with a 4.7-ohm 5% resistor, the resistance of the
combination can range from about 2.58 ohms (if the two
resistors are at the lower bounds) to about 2.97 ohms (if
the two resistors are at the upper bounds).

Alyssa's idea is to implement "interval arithmetic" as a set
of arithmetic operations for combining "intervals" (objects
that represent the range of possible values of an inexact
quantity). The result of adding, subtracting, multiplying, or
dividing two intervals is itself an interval, representing the
range of the result.

Alyssa postulates the existence of an abstract object called
an "interval” that has two endpoints: a lower bound and an
upper bound. She also presumes that, given the endpoints
of an interval, she can construct the interval using the data
constructor make-i nt erval . Alyssa first writes a procedure
for adding two intervals. She reasons that the minimum
value the sum could be is the sum of the two lower bounds

and the maximum value it could be is the sum of the two
upper bounds:

(define (add-interval x vy)
(make-interval (+ (Iower-bound x) (I ower-bound y))
(+ (upper-bound x) (upper-bound y))))

Alyssa also works out the product of two intervals by finding
the minimum and the maximum of the products of the
bounds and using them as the bounds of the resulting
interval. (M n and nax are primitives that find the minimum
or maximum of any number of arguments.)

(define (mul-interval x vy)
(let ((pl (* (lower-bound x) (Iower-bound y)))

(p2 (* (lower-bound x) (upper-bound y)))

(p3 (* (upper-bound x) (Ilower-bound y)))

(p4 (* (upper-bound x) (upper-bound y))))
(make-interval (mn pl p2 p3 p4)

(max pl p2 p3 p4))))
To divide two intervals, Alyssa multiplies the first by the
reciprocal of the second. Note that the bounds of the
reciprocal interval are the reciprocal of the upper bound and
the reciprocal of the lower bound, in that order.
(define (div-interval x vy)

(mul -interval x
(make-interval (/ 1.0 (upper-bound y))

(/ 1.0 (lower-bound y)))))

Exercise 2.7. Alyssa's program is incomplete because
she has not specified the implementation of the interval
abstraction. Here is a definition of the interval constructor:

(define (meke-interval a b) (cons a b))

Define selectors upper - bound and | ower - bound to complete
the implementation.

Exercise 2.8. Using reasoning analogous to Alyssa's,
describe how the difference of two intervals may be
computed. Define a corresponding subtraction procedure,
called sub-interval .

Exercise 2.9. The width of an interval is half of the
difference between its upper and lower bounds. The width
is a measure of the uncertainty of the number specified by
the interval. For some arithmetic operations the width of the
result of combining two intervals is a function only of the
widths of the argument intervals, whereas for others the
width of the combination is not a function of the widths of
the argument intervals. Show that the width of the sum (or
difference) of two intervals is a function only of the widths
of the intervals being added (or subtracted). Give examples
to show that this is not true for multiplication or division.

Exercise 2.10. Ben Bitdiddle, an expert systems
programmer, looks over Alyssa's shoulder and comments
that it is not clear what it means to divide by an interval that

spans zero. Modify Alyssa's code to check for this condition
and to signal an error if it occurs.

Exercise 2.11. In passing, Ben also cryptically comments:
"By testing the signs of the endpoints of the intervals, it is
possible to break nul -i nterval into nine cases, only one of
which requires more than two multiplications." Rewrite this
procedure using Ben's suggestion.

After debugging her program, Alyssa shows it to a potential
user, who complains that her program solves the wrong
problem. He wants a program that can deal with numbers
represented as a center value and an additive tolerance;
for example, he wants to work with intervals such as 3.5+
0.15 rather than [3.35, 3.65]. Alyssa returns to her desk and
fixes this problem by supplying an alternate constructor and
alternate selectors:

(define (nmake-center-width c w)
(meke-interval (- cw (+cw))

(define (center i)
(/ (+ (lower-bound i) (upper-bound i)) 2))

(define (width i)

(/' (- (upper-bound i) (lower-bound i)) 2))
Unfortunately, most of Alyssa's users are engineers. Real
engineering situations usually involve measurements with
only a small uncertainty, measured as the ratio of the width
of the interval to the midpoint of the interval. Engineers

usually specify percentage tolerances on the parameters of
devices, as in the resistor specifications given earlier.

Exercise 2.12. Define a constructor make- cent er - per cent
that takes a center and a percentage tolerance and
produces the desired interval. You must also define a
selector per cent that produces the percentage tolerance for
a given interval. The cent er selector is the same as the one
shown above.

Exercise 2.13. Show that under the assumption of small
percentage tolerances there is a simple formula for the
approximate percentage tolerance of the product of two
intervals in terms of the tolerances of the factors. You may
simplify the problem by assuming that all humbers are
positive.

After considerable work, Alyssa P. Hacker delivers her
finished system. Several years later, after she has forgotten
all about it, she gets a frenzied call from an irate user, Lem
E. Tweakit. It seems that Lem has noticed that the formula
for parallel resistors can be written in two algebraically
equivalent ways:

i K3
R + Ks

and

1
1R1 + ll."'R-'_:

He has written the following two programs, each of which
computes the parallel-resistors formula differently:

(define (parl rl r2)
(div-interval (mul-interval rl r2)
(add-interval rl1r2)))

(define (par2 rl r2)
(let ((one (nmake-interval 1 1)))

(div-interval one
(add-interval (div-interval one r1l)

(div-interval oner2)))))

Lem complains that Alyssa's program gives different
answers for the two ways of computing. This is a serious
complaint.

Exercise 2.14. Demonstrate that Lem is right. Investigate
the behavior of the system on a variety of arithmetic
expressions. Make some intervals A and B, and use them
in computing the expressions A/A and A/B. You will get
the most insight by using intervals whose width is a small
percentage of the center value. Examine the results of the
computation in center-percent form (see exercise 2.12).

Exercise 2.15. Eva Lu Ator, another user, has also
noticed the different intervals computed by different but
algebraically equivalent expressions. She says that a

formula to compute with intervals using Alyssa's system will
produce tighter error bounds if it can be written in such a
form that no variable that represents an uncertain number
is repeated. Thus, she says, par 2 is a "better" program for
parallel resistances than par 1. Is she right? Why?

Exercise 2.16. Explain, in general, why equivalent
algebraic expressions may lead to different answers. Can
you devise an interval-arithmetic package that does not
have this shortcoming, or is this task impossible? (Warning:
This problem is very difficult.)

2.2 Hierarchical Data and the
Closure Property

As we have seen, pairs provide a primitive "glue" that we
can use to construct compound data objects. Figure 2.2
shows a standard way to visualize a pair -- in this case, the
pair formed by (cons 1 2). In this representation, which is
called box-and-pointer notation, each object is shown as
a pointer to a box. The box for a primitive object contains
a representation of the object. For example, the box for a
number contains a numeral. The box for a pair is actually a
double box, the left part containing (a pointer to) the car of
the pair and the right part containing the cdr .

We have already seen that cons can be used to combine
not only numbers but pairs as well. (You made use of this

fact, or should have, in doing exercises 2.2 and 2.3.) As
a consequence, pairs provide a universal building block
from which we can construct all sorts of data structures.
Figure 2.3 shows two ways to use pairs to combine the
numbers 1, 2, 3, and 4.

Figure 2.2: Box-and-pointer representation of (cons 1 2).

—— 4| S 2

|

1

Figure 2.3: Two ways to combine 1, 2, 3, and 4 using pairs.

[l ot—={ele] ——=[e[ef—{:]

i U0 glaegm
=] [=] 2] [=

focons f{cons 1 Z) {cons (cona 1
{ocona 3 43} focoma 2 33}
4]

The ability to create pairs whose elements are pairs is the
essence of list structure's importance as a representational
tool. We refer to this ability as the closure property of cons.
In general, an operation for combining data objects satisfies

the closure property if the results of combining things with
that operation can themselves be combined using the same

operation.® Closure is the key to power in any means of
combination because it permits us to create hierarchical
structures -- structures made up of parts, which themselves
are made up of parts, and so on.

From the outset of chapter 1, we've made essential use
of closure in dealing with procedures, because all but the
very simplest programs rely on the fact that the elements
of a combination can themselves be combinations. In
this section, we take up the consequences of closure
for compound data. We describe some conventional
techniques for using pairs to represent sequences and
trees, and we exhibit a graphics language that illustrates

closure in a vivid way.’

6 The use of the word "closure" here comes from abstract algebra, where
a set of elements is said to be closed under an operation if applying
the operation to elements in the set produces an element that is again
an element of the set. The Lisp community also (unfortunately) uses the
word "“closure" to describe a totally unrelated concept: A closure is an
implementation technique for representing procedures with free variables.
We do not use the word "closure" in this second sense in this book.

7 The notion that a means of combination should satisfy closure is
a straightforward idea. Unfortunately, the data combiners provided in
many popular programming languages do not satisfy closure, or make
closure cumbersome to exploit. In Fortran or Basic, one typically combines
data elements by assembling them into arrays -- but one cannot form
arrays whose elements are themselves arrays. Pascal and C admit
structures whose elements are structures. However, this requires that the

2.2.1 Representing Sequences

Figure 2.4: The sequence 1, 2, 3, 4 represented as a chain of pairs.

Loy

1 2 = 1

One of the useful structures we can build with pairs is a
sequence -- an ordered collection of data objects. There
are, of course, many ways to represent sequences in terms
of pairs. One particularly straightforward representation is
illustrated in figure 2.4, where the sequence 1, 2, 3, 4 is
represented as a chain of pairs. The car of each pair is the
corresponding item in the chain, and the cdr of the pair is
the next pair in the chain. The cdr of the final pair signals the
end of the sequence by pointing to a distinguished value
that is not a pair, represented in box-and-pointer diagrams

programmer manipulate pointers explicitly, and adhere to the restriction
that each field of a structure can contain only elements of a prespecified
form. Unlike Lisp with its pairs, these languages have no built-in general-
purpose glue that makes it easy to manipulate compound data in a
uniform way. This limitation lies behind Alan Perlis's comment in his
foreword to this book: "In Pascal the plethora of declarable data structures
induces a specialization within functions that inhibits and penalizes casual
cooperation. It is better to have 100 functions operate on one data
structure than to have 10 functions operate on 10 data structures."

as a diagonal line and in programs as the value of the
variable ni | . The entire sequence is constructed by nested
cons operations:

(cons 1
(cons 2
(cons 3

(cons 4 nil))))

Such a sequence of pairs, formed by nested conses, is
called a list, and Scheme provides a primitive called | i st

to help in constructing lists.® The above sequence could be
produced by (1ist 1 2 3 4).In general,

(list <al> <a2> ... <a,>)
is equivalent to
(cons <al> (cons < a2> (cons ... (cons <a,>nil) ...)))

Lisp systems conventionally print lists by printing the
sequence of elements, enclosed in parentheses. Thus, the
data object in figure 2.4 is printed as (1 2 3 4):

(define one-through-four (list 1 2 3 4))

one-t hr ough- f our
(1 23 4)

8 In this book, we use list to mean a chain of pairs terminated by the end-
of-list marker. In contrast, the term list structure refers to any data structure
made out of pairs, not just to lists.

Be careful not to confuse the expression (list 1 2 3
4) with the list (1 2 3 4), which is the result obtained
when the expression is evaluated. Attempting to evaluate
the expression (1 2 3 4) will signal an error when the
interpreter tries to apply the procedure 1 to arguments 2,
3, and 4.

We can think of car as selecting the first item in the list,
and of cdr as selecting the sublist consisting of all but the
first item. Nested applications of car and cdr can be used to

extract the second, third, and subsequent items in the list.’
The constructor cons makes a list like the original one, but
with an additional item at the beginning.

(car one-through-four)
1

(cdr one-through-four)

(2 3 4)

(car (cdr one-through-four))
2

(cons 10 one-through-four)
(10 1 2 3 4)

(cons 5 one-through-four)
(5123 4)

The value of ni |, used to terminate the chain of pairs, can
be thought of as a sequence of no elements, the empty list.

9 Since nested applications of car and cdr are cumbersome to write, Lisp
dialects provide abbreviations for them -- for instance,

The word nil is a contraction of the Latin word nihil, which
means "nothing."*’

List operations

The use of pairs to represent sequences of elements
as lists is accompanied by conventional programming
techniques for manipulating lists by successively "cdring
down" the lists. For example, the procedure | i st - ref takes
as arguments a list and a number n and returns the nth item
of the list. It is customary to number the elements of the
list beginning with 0. The method for computing | i st - ref
is the following:

Forn =0, Iist-ref should return the car of the list.

Otherwise, i st -ref should return the (n - 1)st item of
the cdr of the list.

(define (list-ref itens n)
(if (=n0)

10 It's remarkable how much energy in the standardization of Lisp dialects
has been dissipated in arguments that are literally over nothing: Should
nil be an ordinary name? Should the value of nil be a symbol? Should it
be a list? Should it be a pair? In Scheme, nil is an ordinary name, which
we use in this section as a variable whose value is the end-of-list marker
(just as true is an ordinary variable that has a true value). Other dialects of
Lisp, including Common Lisp, treat nil as a special symbol. The authors of
this book, who have endured too many language standardization brawls,
would like to avoid the entire issue. Once we have introduced quotation
in section 2.3, we will denote the empty list as ‘() and dispense with the
variable nil entirely.

(car itemns)
(list-ref (cdr itens) (- n 1))))

(define squares (list 1 4 9 16 25))

(list-ref squares 3)
16

Often we cdr down the whole list. To aid in this, Scheme
includes a primitive predicate nul | 2, which tests whether
its argument is the empty list. The procedure | engt h, which
returns the number of items in a list, illustrates this typical
pattern of use:
(define (length itens)
(if (null? itemns)
0
(+ 1 (length (cdr itens)))))

(define odds (list 1 35 7))

(I ength odds)
4

The | engt h procedure implements a simple recursive plan.
The reduction step is:

The 1 engt h of any list is 1 plus the | engt h of the cdr of
the list.

This is applied successively until we reach the base case:
The 1 engt h of the empty list is 0.

We could also compute | engt h in an iterative style:

(define (length itens)
(define (length-iter a count)
(if (null? a)
count
(length-iter (cdr a) (+ 1 count))))

(length-iter itens 0))

Another conventional programming technique is to "cons
up" an answer list while cdring down a list, as in the
procedure append, which takes two lists as arguments and
combines their elements to make a new list:

(append squares odds)
(1491625135 7)

(append odds squares)
(1357149 16 25)

Append iS also implemented using a recursive plan. To
append lists 1i st1 and Ii st 2, do the following:

If1ist1isthe empty list, then the result is just Ii st 2.

Otherwise, append the cdr of Iist1 andlist2, and cons
the car of Ii st 1 onto the result:

(define (append listl list2)
(if (null? listl)
list2
(cons (car listl) (append (cdr listl) list2))))

Exercise 2.17. Define a procedure | ast - pai r that returns
the list that contains only the last element of a given
(nonempty) list:

(last-pair (list 23 72 149 34))

(34)

Exercise 2.18. Define a procedure reverse that takes a
list as argument and returns a list of the same elements in
reverse order:

(reverse (list 1 4 9 16 25))

(25 16 9 4 1)

Exercise 2.19. Consider the change-counting program
of section 1.2.2. It would be nice to be able to easily
change the currency used by the program, so that we could
compute the number of ways to change a British pound,
for example. As the program is written, the knowledge of
the currency is distributed partly into the procedure first -
denomi nati on and partly into the procedure count - change
(which knows that there are five kinds of U.S. coins). It
would be nicer to be able to supply a list of coins to be used
for making change.

We want to rewrite the procedure cc so that its second
argument is a list of the values of the coins to use rather
than an integer specifying which coins to use. We could
then have lists that defined each kind of currency:

(define us-coins (list 50 25 10 5 1))

(define uk-coins (list 100 50 20 10 5 2 1 0.5))
We could then call cc as follows:

(cc 100 us-coins)
292

To do this will require changing the program cc somewhat.
It will still have the same form, but it will access its second
argument differently, as follows:

(define (cc amount coin-val ues)

(cond ((= anpbunt 0) 1)
((or (< amount 0) (no-nore? coin-values)) 0)

(el se
(+ (cc anount

(except-first-denom nation coin-val ues))
(cc (- anount
(first-denom nation coin-val ues))

coin-values)))))

Define the procedures first-denoni nati on, except-first-
denoni nat i on, and no- nor e? in terms of primitive operations
on list structures. Does the order of the list coi n-val ues
affect the answer produced by cc? Why or why not?

Exercise 2.20. The procedures +,*, and | i st take arbitrary
numbers of arguments. One way to define such procedures
is to use define with dotted-tail notation. In a procedure
definition, a parameter list that has a dot before the last

parameter name indicates that, when the procedure is
called, the initial parameters (if any) will have as values the
initial arguments, as usual, but the final parameter's value
will be a list of any remaining arguments. For instance,
given the definition

(define (f xy . z) <body>)

the procedure f can be called with two or more arguments.
If we evaluate

(f 12345 86)

then in the body of f, x will be 1, y will be 2, and z will be
the list (3 4 5 6). Given the definition

(define (g . w) <body>)

the procedure g can be called with zero or more arguments.
If we evaluate

(g123456)

then in the body of g, wwill be the list (1 2 3 4 5 6)."

Use this notation to write a procedure same-parity that
takes one or more integers and returns a list of all the
arguments that have the same even-odd parity as the first
argument. For example,

(same-parity 1 2 3456 7)

(135 7)

11 To define f and g using lambda we would write

(sanme-parity 2 3 456 7)
(2 4 6)

Mapping over lists

One extremely useful operation is to apply some
transformation to each element in a list and generate the
list of results. For instance, the following procedure scales
each number in a list by a given factor:

(define (scale-list items factor)
(if (null? itemns)
nil
(cons (* (car itens) factor)

(scale-list (cdr itenms) factor))))
(scale-list (list 1 2 3 4 5) 10)

(10 20 30 40 50)

We can abstract this general idea and capture it as a
common pattern expressed as a higher-order procedure,
just as in section 1.3. The higher-order procedure here
is called map. Map takes as arguments a procedure of
one argument and a list, and returns a list of the results
produced by applying the procedure to each elementin the

list:*

12 Scheme standardly provides a map procedure that is more general
than the one described here. This more general map takes a procedure
of n arguments, together with n lists, and applies the procedure to all the

(define (map proc itens)
(if (null? itemns)
nil
(cons (proc (car itemns))

(map proc (cdr itens)))))
(map abs (list -10 2.5 -11.6 17))

(10 2.5 11.6 17)
(map (lanbda (x) (* x X))
(list 1 2 3 4))

(149 16)

Now we can give a new definition of scal e-1ist in terms
of map:

(define (scale-list items factor)
(map (lanmbda (x) (* x factor))

itens))

Map iS an important construct, not only because it captures
a common pattern, but because it establishes a higher level
of abstraction in dealing with lists. In the original definition
of scal e-1i st, the recursive structure of the program draws
attention to the element-by-element processing of the list.
Defining scal e-1i st in terms of map suppresses that level
of detail and emphasizes that scaling transforms a list of

first elements of the lists, all the second elements of the lists, and so on,
returning a list of the results. For example:

elements to a list of results. The difference between the two
definitions is not that the computer is performing a different
process (it isn't) but that we think about the process
differently. In effect, map helps establish an abstraction
barrier that isolates the implementation of procedures that
transform lists from the details of how the elements of the
list are extracted and combined. Like the barriers shown in
figure 2.1, this abstraction gives us the flexibility to change
the low-level details of how sequences are implemented,
while preserving the conceptual framework of operations
that transform sequences to sequences. Section 2.2.3
expands on this use of sequences as a framework for
organizing programs.

Exercise 2.21. The procedure square-1ist takes a list of
numbers as argument and returns a list of the squares of
those numbers.

(square-list (list 1 2 3 4))
(149 16)

Here are two different definitions of square-1i st . Complete
both of them by filling in the missing expressions:

(define (square-list itens)
(if (null? itens)
nil
(cons <??> <
??7>)))
(define (square-list itens)
(map <??> <??>))

Exercise 2.22. Louis Reasoner tries to rewrite the first
square- i st procedure of exercise 2.21 so that it evolves
an iterative process:

(define (square-list itemns)
(define (iter things answer)
(if (null? things)
answer
(iter (cdr things)

(cons (square (car things))
answer))))

(iter items nil))

Unfortunately, defining square-1i st this way produces the
answer list in the reverse order of the one desired. Why?

Louis then tries to fix his bug by interchanging the
arguments to cons:

(define (square-list itens)
(define (iter things answer)
(if (null? things)
answer
(iter (cdr things)

(cons answer
(square (car things))))))

(iter items nil))

This doesn't work either. Explain.

Exercise 2.23. The procedure for-each is similar to map.
It takes as arguments a procedure and a list of elements.
However, rather than forming a list of the results, for-
each just applies the procedure to each of the elements in
turn, from left to right. The values returned by applying the
procedure to the elements are not used at all -- for- each
is used with procedures that perform an action, such as
printing. For example,

(for-each (lanbda (x) (newine) (display x))
(list 57 321 88))

57
321
88

The value returned by the call to f or-each (not illustrated
above) can be something arbitrary, such as true. Give an
implementation of f or - each.

2.2.2 Hierarchical Structures

The representation of sequences in terms of lists
generalizes naturally to represent sequences whose
elements may themselves be sequences. For example, we
can regard the object ((1 2) 3 4) constructed by

(cons (list 1 2) (list 3 4))

as a list of three items, the first of which is itself a list,
(1 2).Indeed, this is suggested by the form in which the

result is printed by the interpreter. Figure 2.5 shows the
representation of this structure in terms of pairs.

Figure 2.5: Structure formed by (cons (list 1 2) (list 3
4)).

R I 1 1%

2 [
-

Another way to think of sequences whose elements are
sequences is as trees. The elements of the sequence are
the branches of the tree, and elements that are themselves
sequences are subtrees. Figure 2.6 shows the structure in
figure 2.5 viewed as a tree.

Figure 2.6: The list structure in figure 2.5 viewed as a tree.

(f1 23 3 4)

SUNY

1 z

Recursion is a natural tool for dealing with tree structures,
since we can often reduce operations on trees to operations
on their branches, which reduce in turn to operations
on the branches of the branches, and so on, until we
reach the leaves of the tree. As an example, compare the
| ength procedure of section 2.2.1 with the count -1 eaves
procedure, which returns the total number of leaves of a
tree:

(define x (cons (list 1 2) (list 3 4)))

(length x)
3

(count -1 eaves x)
4

(list x x)
(((12) 34) ((12) 34))

(length (list x x))
2

(count -l eaves (list x x))
8

To implement count - | eaves, recall the recursive plan for
computing | engt h:

Lengt h of a list x is 1 plus I engt h of the cdr of x.
Lengt h of the empty list is O.

Count - | eaves is similar. The value for the empty list is the
same:

Count - | eaves Of the empty list is 0.

But in the reduction step, where we strip off the car of the
list, we must take into account that the car may itself be a
tree whose leaves we need to count. Thus, the appropriate
reduction step is

Count - | eaves Of a tree x is count - | eaves Of the car of x
plus count - | eaves Of the cdr oOf x.

Finally, by taking car s we reach actual leaves, so we need
another base case:

Count - | eaves Of a leaf is 1.

To aid in writing recursive procedures on trees, Scheme
provides the primitive predicate pai r 2, which tests whether

its argument is a pair. Here is the complete procedure:™

(define (count-Ieaves x)
(cond ((null? x) 0)
((not (pair? x)) 1)

(el se (+ (count-leaves (car x))

(count-1eaves (cdr x))))))

Exercise 2.24. Suppose we evaluate the expression (1i st
1 (list 2 (list 3 4))). Give the result printed by the
interpreter, the corresponding box-and-pointer structure,
and the interpretation of this as a tree (as in figure 2.6).

Exercise 2.25. Give combinations of cars and cdrs that
will pick 7 from each of the following lists:

(13(57) 9)
((7))
(1 (2 (3 (4(5(67))))))

Exercise 2.26. Suppose we define x and y to be two lists:

(define x (list 1 2 3))
(define y (list 4 5 6))

13 The order of the first two clauses in the cond matters, since the empty
list satisfies null? and also is not a pair.

What result is printed by the interpreter in response to
evaluating each of the following expressions:

(append x)

(cons x vy)

(list xvy)

Exercise 2.27. Modify your reverse procedure of
exercise 2.18 to produce a deep-reverse procedure that
takes a list as argument and returns as its value the list with
its elements reversed and with all sublists deep-reversed
as well. For example,

(define x (list (list 1 2) (list 3 4)))

X
((12) (34))

(reverse Xx)

((34) (12)
(deep-reverse x)
((43) (21))

Exercise 2.28. Write a procedure fringe that takes as
argument a tree (represented as a list) and returns a list
whose elements are all the leaves of the tree arranged in
left-to-right order. For example,

(define x (list (list 1 2) (list 3 4)))

(fringe x)
(123 4)

(fringe (list x x))
(12341234
Exercise 2.29. A binary mobile consists of two branches,
a left branch and a right branch. Each branch is a rod of a
certain length, from which hangs either a weight or another
binary mobile. We can represent a binary mobile using
compound data by constructing it from two branches (for
example, using | i st):
(define (make-mobile left right)

(list left right))

A branch is constructed from a 1 engt h (which must be a
number) together with a st ruct ure, which may be either a
number (representing a simple weight) or another mobile:

(define (nake-branch length structure)
(list length structure))

a. Write the corresponding selectors |eft-branch and
ri ght-branch, which return the branches of a mobile,
and br anch-1 engt h and br anch- st ruct ur e, which return the
components of a branch.

b. Using your selectors, define a procedure t ot al - wei ght
that returns the total weight of a mobile.

c. A mobile is said to be balanced if the torque applied by
its top-left branch is equal to that applied by its top-right
branch (that is, if the length of the left rod multiplied by the

weight hanging from that rod is equal to the corresponding
product for the right side) and if each of the submobiles
hanging off its branches is balanced. Design a predicate
that tests whether a binary mobile is balanced.

d. Suppose we change the representation of mobiles so
that the constructors are
(define (make-nobile left right)

(cons left right))

(define (make-branch | ength structure)
(cons length structure))

How much do you need to change your programs to convert
to the new representation?

Mapping over trees

Just as map is a powerful abstraction for dealing with
sequences, map together with recursion is a powerful
abstraction for dealing with trees. For instance, the scal e-
tree procedure, analogous to scal e-1i st of section 2.2.1,
takes as arguments a numeric factor and a tree whose
leaves are numbers. It returns a tree of the same shape,
where each number is multiplied by the factor. The
recursive plan for scal e-t r ee is similar to the one for count -
| eaves:

(define (scale-tree tree factor)

(cond ((null? tree) nil)
((not (pair? tree)) (* tree factor))

(el se (cons (scale-tree (car tree) factor)

(scale-tree (cdr tree) factor)))))
(scale-tree (list 1 (list 2 (list 3 4) 5) (list 6 7))
10)

(10 (20 (30 40) 50) (60 70))

Another way to implement scal e- t r ee is to regard the tree
as a sequence of sub-trees and use map. We map over the
sequence, scaling each sub-tree in turn, and return the list
of results. In the base case, where the tree is a leaf, we
simply multiply by the factor:

(define (scale-tree tree factor)

(map (Il ambda (sub-tree)
(if (pair? sub-tree)

(scale-tree sub-tree factor)
(* sub-tree factor)))

tree))

Many tree operations can be implemented by similar
combinations of sequence operations and recursion.

Exercise 2.30. Define a procedure squar e-t r ee analogous
to the square-1ist procedure of exercise 2.21. That is,
squar e- | i st should behave as follows:

(square-tree

(list 1
(list 2 (list 3 4) 5)

(list 6 7))

(1 (4 (9 16) 25) (36 49))

Define square-tree both directly (i.e., without using any
higher-order procedures) and also by using map and
recursion.

Exercise 2.31. Abstract your answer to exercise 2.30
to produce a procedure tree-map with the property that
squar e- t ree could be defined as

(define (square-tree tree) (tree-map square tree))

Exercise 2.32. We can represent a set as a list of distinct
elements, and we can represent the set of all subsets of the
set as a list of lists. For example, if the setis (1 2 3), then
the set of all subsetsis (() (3) (2) (2 3) (1) (1 3) (1 2)
(1 2 3)). Complete the following definition of a procedure
that generates the set of subsets of a set and give a clear
explanation of why it works:
(define (subsets s)
(if (null? s)
(list nil)
(let ((rest (subsets (cdr s))))

(append rest (map <
??> rest)))))

2.2.3 Sequences as Conventional
Interfaces

In working with compound data, we've stressed how
data abstraction permits us to design programs without
becoming enmeshed in the details of data representations,
and how abstraction preserves for us the flexibility to
experiment with alternative representations. In this section,
we introduce another powerful design principle for working
with data structures -- the use of conventional interfaces.

In section 1.3 we saw how program abstractions,
implemented as higher-order procedures, can capture
common patterns in programs that deal with numerical
data. Our ability to formulate analogous operations for
working with compound data depends crucially on the style
in which we manipulate our data structures. Consider, for
example, the following procedure, analogous to the count -
| eaves procedure of section 2.2.2, which takes a tree as
argument and computes the sum of the squares of the
leaves that are odd:

(define (sum odd-squares tree)

(cond ((null? tree) 0)
((not (pair? tree))

(if (odd? tree) (square tree) 0))
(el se (+ (sum odd-squares (car tree))

(sum odd-squares (cdr tree))))))

On the surface, this procedure is very different from the
following one, which constructs a list of all the even

Fibonacci numbers Fib(k), where k is less than or equal to
a given integer n:
(define (even-fibs n)
(define (next k)
(if (> k n)
nil
(let ((f (fib k)))
(if (even? f)
(cons f (next (+ k 1)))

(next (+ k 1))))))

(next 0))

Despite the fact that these two procedures are structurally
very different, a more abstract description of the two
computations reveals a great deal of similarity. The first
program

enumerates the leaves of a tree;

filters them, selecting the odd ones;

squares each of the selected ones; and

accumulates the results using +, starting with 0.
The second program

enumerates the integers from O to n;

computes the Fibonacci number for each integer;

filters them, selecting the even ones; and

accumulates the results using cons, starting with the
empty list.

A signal-processing engineer would find it natural to
conceptualize these processes in terms of signals flowing
through a cascade of stages, each of which implements
part of the program plan, as shown in figure 2.7. In sum odd-
squares, We begin with an enumerator, which generates
a "signal" consisting of the leaves of a given tree. This
signal is passed through a filter, which eliminates all but
the odd elements. The resulting signal is in turn passed
through a map, which is a "transducer" that applies the
squar e procedure to each element. The output of the map is
then fed to an accumulator, which combines the elements
using +, starting from an initial 0. The plan for even-fi bs is
analogous.

Figure 2.7: The signal-flow plans for the procedures sum odd-
squar es (top) and even-f i bs (bottom) reveal the commonality
between the two programs.

AoumATate: filtaer: nap: accunulata:
tras laavasz odd? 2quars +, 0
aounArata: nap: filtaer: accunulata:
intagars fib gven? "1 con=, O

Unfortunately, the two procedure definitions above fail
to exhibit this signal-flow structure. For instance, if we
examine the sum odd-squares procedure, we find that
the enumeration is implemented partly by the nul 12 and
pair? tests and partly by the tree-recursive structure
of the procedure. Similarly, the accumulation is found
partly in the tests and partly in the addition used in the
recursion. In general, there are no distinct parts of either
procedure that correspond to the elements in the signal-
flow description. Our two procedures decompose the
computations in a different way, spreading the enumeration
over the program and mingling it with the map, the filter,
and the accumulation. If we could organize our programs to
make the signal-flow structure manifest in the procedures
we write, this would increase the conceptual clarity of the
resulting code.

Sequence Operations

The key to organizing programs so as to more clearly
reflect the signal-flow structure is to concentrate on the
"signals" that flow from one stage in the process to the
next. If we represent these signals as lists, then we can
use list operations to implement the processing at each of
the stages. For instance, we can implement the mapping
stages of the signal-flow diagrams using the map procedure
from section 2.2.1:

(map square (list 1 2 3 4 5))

149 16 25)

Filtering a sequence to select only those elements that
satisfy a given predicate is accomplished by

(define (filter predicate sequence)

(cond ((null? sequence) nil)
((predicate (car sequence))

(cons (car sequence)
(filter predicate (cdr sequence))))

(else (filter predicate (cdr sequence)))))
For example,
(filter odd? (list 1 2 3 4 5))
(13 5)
Accumulations can be implemented by

(define (accumulate op initial sequence)

(if (null? sequence)
initial
(op (car sequence)
(accunul ate op initial (cdr sequence)))))

(accurmulate + 0 (list 1 2 3 4 5))

15
(accurmulate * 1 (list 1 2 3 4 5))

120

(accurmul ate cons nil (list 1 2 3 4 5))

(12345)

All that remains to implement signal-flow diagrams is to
enumerate the sequence of elements to be processed. For
even-fibs, we need to generate the sequence of integers
in a given range, which we can do as follows:

(define (enunerate-interval |ow high)
(if (> low high)
ni |
(cons low (enunmerate-interval (+ low 1) high))))

(enunmerate-interval 2 7)
(234567)

To enumerate the leaves of a tree, we can use**
(define (enunmerate-tree tree)
(cond ((null? tree) nil)
((not (pair? tree)) (list tree))
(el se (append (enunerate-tree (car tree))
(enunerate-tree (cdr tree))))))

(enunerate-tree (list 1 (list 2 (list 3 4)) 5))

(12345)

14 This is, in fact, precisely the fringe procedure from exercise 2.28.
Here we've renamed it to emphasize that it is part of a family of general
sequence-manipulation procedures.

Now we can reformulate sum odd- squares and even-fibs
as in the signal-flow diagrams. For sum odd- squares, we
enumerate the sequence of leaves of the tree, filter this to
keep only the odd numbers in the sequence, square each
element, and sum the results:

(define (sum odd-squares tree)

(accunul ate +
0

(map square
(filter odd?

(enunerate-tree tree)))))

For even-fibs, we enumerate the integers from 0 to
n, generate the Fibonacci number for each of these
integers, filter the resulting sequence to keep only the even
elements, and accumulate the results into a list:

(define (even-fibs n)

(accunul ate cons
ni

(filter even?
(map fib

(enurrerate-interval 0 n)))))

The value of expressing programs as sequence operations
is that this helps us make program designs that are
modular, that is, designs that are constructed by combining

relatively independent pieces. We can encourage modular
design by providing a library of standard components
together with a conventional interface for connecting the
components in flexible ways.

Modular construction is a powerful strategy for controlling
complexity in engineering design. In real signal-
processing applications, for example, designers regularly
build systems by cascading elements selected from
standardized families of filters and transducers. Similarly,
sequence operations provide a library of standard program
elements that we can mix and match. For instance, we
can reuse pieces from the sum odd- squares and even-fi bs
procedures in a program that constructs a list of the squares
of the first n + 1 Fibonacci numbers:
(define (list-fib-squares n)
(accunul ate cons
ni
(map square
(map fib
(enunerate-interval 0 n)))))

(list-fib-squares 10)
(01149 2564 169 441 1156 3025)

We can rearrange the pieces and use them in computing
the product of the odd integers in a sequence:

(define (product-of-squares-of-odd-el ements sequence)

(accunul ate *
1

(map square
(filter odd? sequence))))
(product - of - squar es- of -odd-el ements (list 1 2 3 4 5))

225

We can also formulate conventional data-processing
applications in terms of sequence operations. Suppose we
have a sequence of personnel records and we want to find
the salary of the highest-paid programmer. Assume that we
have a selector sal ary that returns the salary of a record,
and a predicate programrer ? that tests if a record is for a
programmer. Then we can write

(define (sal ary- of - hi ghest - pai d- programmer records)

(accumul at e max
0

(map sal ary

(filter programmer? records))))

These examples give just a hint of the vast range
of operations that can be expressed as sequence

operations.™

Sequences, implemented here as lists, serve as a
conventional interface that permits us to combine
processing modules. Additionally, when we uniformly
represent structures as sequences, we have localized
the data-structure dependencies in our programs to
a small number of sequence operations. By changing
these, we can experiment with alternative representations
of sequences, while leaving the overall design of our
programs intact. We will exploit this capability in section 3.5,
when we generalize the sequence-processing paradigm to
admit infinite sequences.

Exercise 2.33. Fill in the missing expressions to complete
the following definitions of some basic list-manipulation
operations as accumulations:

(define (map p sequence)

15 Richard Waters (1979) developed a program that automatically
analyzes traditional Fortran programs, viewing them in terms of maps,
filters, and accumulations. He found that fully 90 percent of the code in the
Fortran Scientific Subroutine Package fits neatly into this paradigm. One
of the reasons for the success of Lisp as a programming language is that
lists provide a standard medium for expressing ordered collections so that
they can be manipulated using higher-order operations. The programming
language APL owes much of its power and appeal to a similar choice.
In APL all data are represented as arrays, and there is a universal and
convenient set of generic operators for all sorts of array operations.

(accunul ate (lanmbda (x y) <??>) nil sequence))

(define (append seql seq2)

(accunul ate cons <??> <
??7>))
(define (length sequence)

(accunul ate <??> 0 sequence))
Exercise 2.34. Evaluating a polynomial in x at a given
value of x can be formulated as an accumulation. We
evaluate the polynomial

-1
B X + 8,4 + -+ air+an
using a well-known algorithm called Horner's rule, which
structures the computation as

(+(anr + apor)r 4+ ar) T+ ag
In other words, we start with a,, multiply by x, add
a,, multiply by x, and so on, until we reach a,.** Fill

16 According to Knuth (1981), this rule was formulated by W. G.
Horner early in the nineteenth century, but the method was actually
used by Newton over a hundred years earlier. Horner's rule evaluates
the polynomial using fewer additions and multiplications than does the
straightforward method of first computing an xn, then adding an-1xn-1,
and so on. In fact, it is possible to prove that any algorithm for
evaluating arbitrary polynomials must use at least as many additions and
multiplications as does Horner's rule, and thus Horner's rule is an optimal
algorithm for polynomial evaluation. This was proved (for the number of
additions) by A. M. Ostrowski in a 1954 paper that essentially founded
the modern study of optimal algorithms. The analogous statement for
multiplications was proved by V. Y. Pan in 1966. The book by Borodin

in the following template to produce a procedure that
evaluates a polynomial using Horner's rule. Assume that
the coefficients of the polynomial are arranged in a
sequence, from a, through a,.

(define (horner-eval x coefficient-sequence)

(accunul ate (Il anmbda (this-coeff higher-terms) <
??>)
0

coefficient-sequence))

For example, to compute 1 + 3x + 5x° + x° at X = 2 you
would evaluate

(horner-eval 2 (list 1 3050 1))

Exercise 2.35. Redefine count - eaves from section 2.2.2
as an accumulation:
(define (count-Ileaves t)

(accunul ate <??> <??> (map <
??7> <??7>)))
Exercise 2.36. The procedure accunul ate-n is similar to
accunul ate except that it takes as its third argument a
sequence of sequences, which are all assumed to have
the same number of elements. It applies the designated
accumulation procedure to combine all the first elements of
the sequences, all the second elements of the sequences,

and Munro (1975) provides an overview of these and other results about
optimal algorithms.

and so on, and returns a sequence of the results. For
instance, if s is a sequence containing four sequences, ((1
2 3) (4 56) (7 8 9) (10 11 12)), then the value of
(accurul ate-n + 0 s) should be the sequence (22 26 30).
Fill in the missing expressions in the following definition of
accumul at e- n:

(define (accumulate-n op init seqgs)

(if (null? (car segs))
ni
(cons (accunulate op init <
?7?7>)
(accunulate-n op init <

??>))))
Exercise 2.37. Suppose we represent vectors v = (v))
as sequences of numbers, and matrices m = (m;) as

sequences of vectors (the rows of the matrix). For example,
the matrix

1 23 41
15 6 6B
B 7 & O

is represented as the sequence ((1 2 3 4) (4 5 6 6) (6
7 8 9)). With this representation, we can use sequence
operations to concisely express the basic matrix and vector
operations. These operations (which are described in any
book on matrix algebra) are the following:

(dot-product v w) returns the sum ©; wong
\matrix—+-vector m u) returns the vector ¢, where £; = =; my;u;:
\Dmatrix—+-matrix wm) returns the mabrix p, where p;; = Tx maaig;

(transpose m) retirns the mabrix 72, where n; =m ;.
We can define the dot product as"’

(define (dot-product v w)
(accunmulate + 0 (map * v w)))

Fill in the missing expressions in the following procedures

for computing the other matrix operations. (The procedure
accunul at e- n is defined in exercise 2.36.)

(define (matrix-*-vector myv)

(map <?7> m)
(define (transpose mat)
(accunul ate-n <??> <??> mat))

(define (matrix-*-matrix mn)
(let ((cols (transpose n)))
(map <??> m))
Exercise 2.38. The accumul ate procedure is also known
as fol d-right, because it combines the first element of
the sequence with the result of combining all the elements
to the right. There is also a fol d-1eft, which is similar to

17 This definition uses the extended version of map described in
footnote 2.

fol d-ri ght, except that it combines elements working in the
opposite direction:

(define (fold-left op initial sequence)

(define (iter result rest)
(if (null? rest)
resul t
(iter (op result (car rest))

(cdr rest))))

(iter initial sequence))
What are the values of
(fold-right / 1 (list 1 2 3))

(fold-left / 1 (list 1 2 3))
(fold-right list nil (list 1 2 3))

(fold-left list nil (list 1 2 3))

Give a property that op should satisfy to guarantee that
fol d-ri ght and fol d-1eft will produce the same values for
any sequence.

Exercise 2.39. Complete the following definitions of
reverse (exercise 2.18) in terms of fol d-ri ght and f ol d-
| ef t from exercise 2.38:

(define (reverse sequence)
(fold-right (lambda (x y) <??>) nil sequence))

(define (reverse sequence)
(fold-left (lambda (x y) <??>) nil sequence))

Nested Mappings

We can extend the sequence paradigm to include many
computations that are commonly expressed using nested

loops.*® Consider this problem: Given a positive integer n,
find all ordered pairs of distinct positive integers i and |,
where 1< j< i< n, such thati + j is prime. For example, if n
is 6, then the pairs are the following:

i (231156 6
i jt213121 58
itj[3 5577711

A natural way to organize this computation is to generate
the sequence of all ordered pairs of positive integers less
than or equal to n, filter to select those pairs whose sum is
prime, and then, for each pair (i, j) that passes through the
filter, produce the triple (i,j,i + j).

Here is a way to generate the sequence of pairs: For
each integer i< n, enumerate the integers j<i, and for each
such i and j generate the pair (i,j). In terms of sequence
operations, we map along the sequence (enunerate-

18 This approach to nested mappings was shown to us by David Turner,
whose languages KRC and Miranda provide elegant formalisms for
dealing with these constructs. The examples in this section (see also
exercise 2.42) are adapted from Turner 1981. In section 3.5.3, we'll see
how this approach generalizes to infinite sequences.

interval 1 n). For each i in this sequence, we map along
the sequence (enunerate-interval 1 (- i 1)). For each
j in this latter sequence, we generate the pair (list i j).
This gives us a sequence of pairs for each i. Combining all
the sequences for all the i (by accumulating with append)

produces the required sequence of pairs:**
(accumrul at e append
nil
(map (lanmbda (i)
(map (lanmbda (j) (list i j))

(enunerate-interval 1 (- i 1))))

(enunerate-interval 1 n)))

The combination of mapping and accumulating with append
is so common in this sort of program that we will isolate it
as a separate procedure:

(define (flatmap proc seq)
(accunul ate append nil (nmap proc seq)))

Now filter this sequence of pairs to find those whose sum
is prime. The filter predicate is called for each element of
the sequence; its argument is a pair and it must extract the
integers from the pair. Thus, the predicate to apply to each
element in the sequence is

19 We're representing a pair here as a list of two elements rather than as
a Lisp pair. Thus, the "pair" (i,j) is represented as (list i j), not (cons i j).

(define (prime-sun®? pair)

(prine? (+ (car pair) (cadr pair))))
Finally, generate the sequence of results by mapping over
the filtered pairs using the following procedure, which
constructs a triple consisting of the two elements of the pair
along with their sum:

(define (make-pair-sum pair)
(list (car pair) (cadr pair) (+ (car pair) (cadr pai

Combining all these steps yields the complete procedure:

(define (prime-sumpairs n)
(map nake- pair-sum
(filter prime-sun®?

(fl at map
(1 anbda (i)
(map (lanmbda (j) (list i j))
(enunmerate-interval 1 (- i 1))))

(enurerate-interval 1 n)))))

Nested mappings are also useful for sequences other
than those that enumerate intervals. Suppose we wish
to generate all the permutations of a set S; that is, all
the ways of ordering the items in the set. For instance,
the permutations of {1,2,3} are {1,2,3}, { 1,3,2}, {2,1,3},
{2,3,1},{3,1,2}, and { 3,2,1}. Here is a plan for generating
the permutations of S: For each item x in S, recursively

generate the sequence of permutations of S - x,° and
adjoin x to the front of each one. This yields, for each
X in S, the sequence of permutations of S that begin
with X. Combining these sequences for all x gives all the
permutations of S:**
(define (permutations s)
(if (null? s)

; enpty set?

(list nil)
; sequence containing enpty set

(flatmap (I anmbda (x)

(map (I ambda (p) (cons x p))
(pernutations (renpve x s))))

s)))

Notice how this strategy reduces the problem of generating
permutations of S to the problem of generating the
permutations of sets with fewer elements than S. In the
terminal case, we work our way down to the empty list,
which represents a set of no elements. For this, we
generate (1ist nil), which is a sequence with one item,
namely the set with no elements. The renmove procedure

20 The set S - x is the set of all elements of S, excluding x.

21 Semicolons in Scheme code are used to introduce comments.
Everything from the semicolon to the end of the line is ignored by the
interpreter. In this book we don't use many comments; we try to make our
programs self-documenting by using descriptive names.

used in pernutations returns all the items in a given
sequence except for a given item. This can be expressed
as a simple filter:

(define (renove item sequence)
(filter (lanbda (x) (not (= x item))

sequence))

Exercise 2.40. Define a procedure uni que-pairs that,
given an integer n, generates the sequence of pairs (i,j)
with 1< j< i< n. Use uni que- pai rs to simplify the definition
of pri me- sum pai rs given above.

Exercise 2.41. Write a procedure to find all ordered triples
of distinct positive integers i, j, and k less than or equal to
a given integer n that sum to a given integer s.

Exercise 2.42.

Figure 2.8: A solution to the eight-queens puzzle.

el

by

il

Ml

Y

Y

The "eight-queens puzzle" asks how to place eight queens
on a chessboard so that no queen is in check from any
other (i.e., no two queens are in the same row, column,
or diagonal). One possible solution is shown in figure 2.8.

One way to solve the puzzle is to work across the board,
placing a queen in each column. Once we have placed k -
1 queens, we must place the kth queen in a position where
it does not check any of the queens already on the board.
We can formulate this approach recursively: Assume that
we have already generated the sequence of all possible
ways to place k - 1 queens in the first k - 1 columns of the
board. For each of these ways, generate an extended set of
positions by placing a queen in each row of the kth column.
Now filter these, keeping only the positions for which the
queen in the kth column is safe with respect to the other
queens. This produces the sequence of all ways to place
k queens in the first k columns. By continuing this process,
we will produce not only one solution, but all solutions to
the puzzle.

We implement this solution as a procedure queens, which
returns a sequence of all solutions to the problem of placing
n queens on an nx n chessbhoard. Queens has an internal
procedure queen- col s that returns the sequence of all ways
to place queens in the first k columns of the board.
(define (queens board-size)
(define (queen-cols k)
(if (=k 0)
(l'ist enpty-board)

(filter
(1 anmbda (positions) (safe? k positions))

(flatmap

(1l anbda (rest-of - queens)
(map (1 ambda (new-row)
(adj oi n-position newrow k rest-of -
(enunerate-interval 1 board-size)))
(queen-cols (- k 1))))))

(queen-col s board-size))

In this procedure rest - of - queens is a way to place k - 1
queens in the first k - 1 columns, and new r owis a proposed
row in which to place the queen for the kth column.
Complete the program by implementing the representation
for sets of board positions, including the procedure adj oi n-
posi ti on, which adjoins a new row-column position to a set
of positions, and enpt y- boar d, which represents an empty
set of positions. You must also write the procedure saf e?,
which determines for a set of positions, whether the queen
in the kth column is safe with respect to the others. (Note
that we need only check whether the new queen is safe --
the other queens are already guaranteed safe with respect
to each other.)

Exercise 2.43. Louis Reasoner is having a terrible time
doing exercise 2.42. His queens procedure seems to work,
but it runs extremely slowly. (Louis never does manage to
wait long enough for it to solve even the 6x 6 case.) When
Louis asks Eva Lu Ator for help, she points out that he

has interchanged the order of the nested mappings in the
fl at map, Writing it as
(flatmap

(1l anbda (new-row)

(map (1 anmbda (rest-of-queens)
(adj oi n-position newrow k rest-of-queens))

(queen-cols (- k 1))))

(enunerate-interval 1 board-size))

Explain why this interchange makes the program run
slowly. Estimate how long it will take Louis's program to
solve the eight-queens puzzle, assuming that the program
in exercise 2.42 solves the puzzle in time T.

2.2.4 Example: A Picture Language

This section presents a simple language for drawing
pictures that illustrates the power of data abstraction
and closure, and also exploits higher-order procedures
in an essential way. The language is designed to make
it easy to experiment with patterns such as the ones
in figure 2.9, which are composed of repeated elements

that are shifted and scaled.” In this language, the data
objects being combined are represented as procedures

22 The picture language is based on the language Peter Henderson
created to construct images like M.C. Escher's "Square Limit" woodcut
(see Henderson 1982). The woodcut incorporates a repeated scaled
pattern, similar to the arrangements drawn using the square-limit
procedure in this section.

rather than as list structure. Just as cons, which satisfies
the closure property, allowed us to easily build arbitrarily
complicated list structure, the operations in this language,
which also satisfy the closure property, allow us to easily
build arbitrarily complicated patterns.

Figure 2.9: Designs generated with the picture language.

The picture language

When we began our study of programming in section 1.1,
we emphasized the importance of describing a language
by focusing on the language's primitives, its means of
combination, and its means of abstraction. We'll follow that
framework here.

Part of the elegance of this picture language is that there
is only one kind of element, called a painter. A painter
draws an image that is shifted and scaled to fit within
a designated parallelogram-shaped frame. For example,
there's a primitive painter we'll call wave that makes a crude
line drawing, as shown in figure 2.10. The actual shape
of the drawing depends on the frame -- all four images
in figure 2.10 are produced by the same wave painter, but
with respect to four different frames. Painters can be more
elaborate than this: The primitive painter called rogers
paints a picture of MIT's founder, William Barton Rogers,
as shown in figure 2.11.” The four images in figure 2.11

are drawn with respect to the same four frames as the wave
images in figure 2.10.

23 William Barton Rogers (1804-1882) was the founder and first president
of MIT. A geologist and talented teacher, he taught at William and Mary
College and at the University of Virginia. In 1859 he moved to Boston,
where he had more time for research, worked on a plan for establishing a
"polytechnic institute," and served as Massachusetts's first State Inspector
of Gas Meters.

To combine images, we use various operations that
construct new painters from given painters. For example,
the besi de operation takes two painters and produces a
new, compound painter that draws the first painter's image
in the left half of the frame and the second painter's image
in the right half of the frame. Similarly, bel ow takes two
painters and produces a compound painter that draws the
first painter's image below the second painter's image.
Some operations transform a single painter to produce
a new painter. For example, flip-vert takes a painter
and produces a painter that draws its image upside-down,
and flip-horiz produces a painter that draws the original
painter's image left-to-right reversed.

Figure 2.10: Images produced by the wave painter, with respect to
four different frames. The frames, shown with dotted lines, are not part

of the images.

3 . -
™, - -
" Y o
T .,
. ' -
| - 1 -
- '
\ .. -
| - ' Lt ™,
' 1 ™, -,
I 1) .
' -
1
| | o, I. .,
| 1 [) "
N L .
N . B .
| !]
1 !
e — —————

P I
1 1 |
1 1
1 1
] ' | I
[
' 1 1 |
I 1
B | 1 I
: I
] .II __-_. I_\'.
L} u"’ .
o .
i A
L L
(3 ! i
.._n' 1 - ‘0
| 1 "
LI
1 .o :
! |
1 o A
' 1 .
| I| P '-\.I
| r 'I 1
'
I |I [|
' 1
N N S
— - - - — - — — — — ——— — - -
' - "~
] * -
I-\._.'
] ~ &
! ., - :
] .= -
] “'H .
] . L ; ,
' : e
| . x'\- =
] .-_'. ..\l =
] ; RN - -
] - - b -
! - "
| - ™ s

Figure 2.11: Images of William Barton Rogers, founder and first
president of MIT, painted with respect to the same four frames as in

figure 2.10 (original image reprinted with the permission of the MIT
Museum).

Figure 2.12 shows the drawing of a painter called wave4 that
is built up in two stages starting from wave:

(define wave2 (beside wave (flip-vert wave)))

(define wave4 (bel ow wave2 wave?2))

Figure 2.12: Creating a complex figure, starting from the wave
painter of figure 2.10.

1 1 1 1
! 1 ! I Yoy
1 1 f
| '
|I \ | |I ' .
X ' 1 I ' II II -~
A
| 1 | [| :
! ' 1 1 'I ' h s
L] .
" | 1 1 'y I|
1 1 |
] - | h
' '-_.-'"") ' h
i b 3 1 [
I Y N
] i L v
s s vy h
LI} I '|_ N LA s
; . X i | k
H h
v ' | V
! | L. poLL
| [!
' T I I
| . - ; I I
1 ' . ;
I A W 1 1
L 1 A
1 1 “ 1 1
o !
1 o 1 - 'l 1
| v, 1
'
| I' 1 1 . 1
b P \ 1

- \ ' ' Y .
", L — I . -~
" n Lt
- . '--.\'. h '\..\. II = -
d ' . - ~, _." -
i II ..I - : . .-' T=- . — —
! . . - 1 Y
L) '\ . N .-' L] L]
.l b Y s [L
1 Do ' !
1 1 S [;
h ; | | \ . 5o
N . 1) ! !
' k ! v
kY ! '. II .' .I o ’
'. ' [I . -
. — — ' ;. -
- L . o . ' -t -
s - L -
- II l..\. . -'.-. - - - ’
1 LR P . . -
1 1 ' . h v 1
' !y . -, ' '
I S '
1 . - '_]
1 N " T i
(define wave2 (define wave4

(beside wave (flip-

vert wave))) (below wave?2 wave?))

In building up a complex image in this manner we are
exploiting the fact that painters are closed under the
language’'s means of combination. The besi de Or bel ow Of
two painters is itself a painter; therefore, we can use it as an
element in making more complex painters. As with building
up list structure using cons, the closure of our data under
the means of combination is crucial to the ability to create
complex structures while using only a few operations.

Once we can combine painters, we would like to be
able to abstract typical patterns of combining painters.
We will implement the painter operations as Scheme
procedures. This means that we don't need a special
abstraction mechanism in the picture language: Since the
means of combination are ordinary Scheme procedures,
we automatically have the capability to do anything with
painter operations that we can do with procedures. For
example, we can abstract the pattern in wave4 as
(define (flipped-pairs painter)

(let ((painter2 (beside painter (flip-vert painter))

(bel ow painter2 painter2)))
and define wave4 as an instance of this pattern:
(define waved (flipped-pairs wave))

We can also define recursive operations. Here's one that
makes painters split and branch towards the right as shown
in figures 2.13 and 2.14:
(define (right-split painter n)
(if (=n0)
pai nter
(let ((smaller (right-split painter (- n 1))))

(beside painter (below snaller snaller)))))

Figure 2.13: Recursive plans forri ght - spl it and cor ner -
split.

right-zplit

a1l

identity

right-zplit

-l

up- up—
gplit | =plit cornar-split
n—L n-1 n-1
right-=plit
n-L
identity
right-zplit
n-L
right-split n corner-split n

We can produce balanced patterns by branching upwards
as well as towards the right (see exercise 2.44 and
figures 2.13 and 2.14):

(define (corner-split painter n)
(if (=n0)
pai nter
(let ((up (up-split painter (- n 1)))
(right (right-split painter (- n 1))))

(let ((top-left (beside up up))

(bottomright (below right right))
(corner (corner-split painter (- n 1))))
(beside (bel ow painter top-left)

(bel ow bottomright corner))))))

Figure 2.14: The recursive operations ri ght - spl i t and cor ner -
spl i t applied to the painters wave and r oger s. Combining four

corner-split figures produces symmetric squar e-1i m t designs
as shown in figure 2.9.

e A e A i e T e i 0 Wl T Wt i Wi
AT_.._p....__._ -..ﬂ__.ua....._..h. F ST g Ve A E e Vg

,.r _..ﬂhﬂ.w..ﬂ.f .i-ﬂu ..n__.t_..r

(right-split rogers 4)

(right-split wave 4)

Ht

.

n
]
n
n
n

"
[

ads

T

i
e

W B

A

[~

S

L

D
3

- o
(corner-split wave 4) (corner-split rogers 4)
By placing four copies of a corner - spl i t appropriately, we
obtain a pattern called square-1ini t, whose application to
wave and roger s is shown in figure 2.9:

(define (square-limt painter n)
(let ((quarter (corner-split painter n)))
(let ((half (beside (flip-horiz quarter) quarter)))

(below (flip-vert half) half))))

Exercise 2.44. Define the procedure up-split used by
corner-split. It is similar to right-split, except that it
switches the roles of bel ow and besi de.

Higher-order operations

In addition to abstracting patterns of combining painters,
we can work at a higher level, abstracting patterns of
combining painter operations. That is, we can view the
painter operations as elements to manipulate and can write
means of combination for these elements -- procedures
that take painter operations as arguments and create new
painter operations.

For example, flipped-pairs and square-linit each
arrange four copies of a painter's image in a square
pattern; they differ only in how they orient the copies. One
way to abstract this pattern of painter combination is with
the following procedure, which takes four one-argument
painter operations and produces a painter operation that
transforms a given painter with those four operations and
arranges the results in a square. Tl, tr, bl, and br are
the transformations to apply to the top left copy, the top
right copy, the bottom left copy, and the bottom right copy,
respectively.

(define (square-of-four tl tr bl br)

(1 ambda (painter)
(let ((top (beside (tl painter) (tr painter)))

(bottom (beside (bl painter) (br painter))))

(bel ow bottomtop))))

Then f1i pped- pai rs can be defined in terms of squar e- of -
four as follows:*

(define (flipped-pairs painter)
(let ((conbined4 (square-of-four identity flip-vert

identity flip-vert)))
(conbi ned4 painter)))
and square-1init can be expressed as®
(define (square-limt painter n)
(let ((combine4 (square-of-four flip-horiz identity
rotatel80 flip-vert)))

(conbi ned4 (corner-split painter n))))

Exercise 2.45. Right-split and up-split can be
expressed as instances of a general splitting operation.
Define a procedure spl it with the property that evaluating

(define right-split (split beside bel ow))

(define up-split (split bel ow beside))

24 Equivalently, we could write

25 Rotatel180 rotates a painter by 180 degrees (see exercise 2.50).
Instead of rotate180 we could say (compose flip-vert flip-horiz), using the
compose procedure from exercise 1.42.

produces procedures right-split and up-split with the
same behaviors as the ones already defined.

Frames

Before we can show how to implement painters and their
means of combination, we must first consider frames. A
frame can be described by three vectors -- an origin vector
and two edge vectors. The origin vector specifies the offset
of the frame's origin from some absolute origin in the plane,
and the edge vectors specify the offsets of the frame's
corners from its origin. If the edges are perpendicular, the
frame will be rectangular. Otherwise the frame will be a
more general parallelogram.

Figure 2.15 shows a frame and its associated vectors. In
accordance with data abstraction, we need not be specific
yet about how frames are represented, other than to say
that there is a constructor nmake- f rane, which takes three
vectors and produces a frame, and three corresponding
selectors ori gi n-frane, edgel- f rane, and edge2- f r ane (see
exercise 2.47).

Figure 2.15: A frame is described by three vectors -- an origin and
two edges.

frame

GELgLI (0,0} point

on display screen
We will use coordinates in the unit square (0< x,y< 1) to
specify images. With each frame, we associate a frame
coordinate map, which will be used to shift and scale
images to fit the frame. The map transforms the unit square
into the frame by mapping the vector v = (x,y) to the vector
sum

Origin(Frame) 4+ r « Edge, (Frame) + y : Edpes{Frame]

vector

For example, (0,0) is mapped to the origin of the frame,
(1,1) to the vertex diagonally opposite the origin, and
(0.5,0.5) to the center of the frame. We can create a frame's

coordinate map with the following procedure:*

(define (frame-coord-map frane)
(1 ambda (v)
(add- vect
(origin-frame frane)
(add-vect (scal e-vect (xcor-vect v)

(edgel-franme frane))
(scal e-vect (ycor-vect v)

(edge2-frame frane))))))

Observe that applying f r ane- coor d- map to a frame returns
a procedure that, given a vector, returns a vector. If the
argument vector is in the unit square, the result vector will
be in the frame. For example,

((frame-coord-map a-frane) (nake-vect 0 0))
returns the same vector as

(origin-frame a-frane)

26 Frame-coord-map uses the vector operations described in
exercise 2.46 below, which we assume have been implemented using
some representation for vectors. Because of data abstraction, it doesn't
matter what this vector representation is, so long as the vector operations
behave correctly.

Exercise 2.46. A two-dimensional vector v running
from the origin to a point can be represented as a
pair consisting of an x-coordinate and a y-coordinate.
Implement a data abstraction for vectors by giving a
constructor nake-vect and corresponding selectors xcor -
vect and ycor-vect. In terms of your selectors and
constructor, implement procedures add- vect , sub- vect , and
scal e-vect that perform the operations vector addition,
vector subtraction, and multiplying a vector by a scalar:

(r1,0) + (22,09) = (r1+ 12,1+)
(£, 31) —(E2,9) = (X1 —T2,31 — y2)
s'(£,y) = (sz,sy)

Exercise 2.47. Here are two possible constructors for
frames:

(define (make-frame origin edgel edge2)
(list origin edgel edge2))

(define (make-frame origin edgel edge2)
(cons origin (cons edgel edge2)))

For each constructor supply the appropriate selectors to
produce an implementation for frames.

Painters

A painter is represented as a procedure that, given a frame
as argument, draws a particular image shifted and scaled

to fit the frame. That is to say, if p is a painter and f is a
frame, then we produce p's image in f by calling p with f
as argument.

The details of how primitive painters are implemented
depend on the particular characteristics of the graphics
system and the type of image to be drawn. For instance,
suppose we have a procedure draw1i ne that draws a line
on the screen between two specified points. Then we can
create painters for line drawings, such as the wave painter
in figure 2.10, from lists of line segments as follows:*’
(define (segnments->painter segnent-list)
(lanbda (frane)
(for-each
(1l anbda (segnent)

(drawline
((franme-coord-map frane) (start-segnment segnent))

((franme-coord-map franme) (end-segnent segnment))))

segnent-list)))

The segments are given using coordinates with respect
to the unit square. For each segment in the list, the
painter transforms the segment endpoints with the frame

27 Segments->painter uses the representation for line segments
described in exercise 2.48 below. It also uses the for-each procedure
described in exercise 2.23.

coordinate map and draws a line between the transformed
points.

Representing painters as procedures erects a powerful
abstraction barrier in the picture language. We can create
and intermix all sorts of primitive painters, based on
a variety of graphics capabilities. The details of their
implementation do not matter. Any procedure can serve as
a painter, provided that it takes a frame as argument and

draws something scaled to fit the frame.”®

Exercise 2.48. Adirected line segment in the plane can be
represented as a pair of vectors -- the vector running from
the origin to the start-point of the segment, and the vector
running from the origin to the end-point of the segment.
Use your vector representation from exercise 2.46 to define
a representation for segments with a constructor nake-
segnent and selectors start-segment and end- segnent .

28 For example, the rogers painter of figure 2.11 was constructed from
a gray-level image. For each point in a given frame, the rogers painter
determines the point in the image that is mapped to it under the frame
coordinate map, and shades it accordingly. By allowing different types
of painters, we are capitalizing on the abstract data idea discussed in
section 2.1.3, where we argued that a rational-number representation
could be anything at all that satisfies an appropriate condition. Here we're
using the fact that a painter can be implemented in any way at all, so long
as it draws something in the designated frame. Section 2.1.3 also showed
how pairs could be implemented as procedures. Painters are our second
example of a procedural representation for data.

Exercise 2.49. Use segments->painter to define the
following primitive painters:

a. The painter that draws the outline of the designated
frame.

b. The painter that draws an "X" by connecting opposite
corners of the frame.

c. The painter that draws a diamond shape by connecting
the midpoints of the sides of the frame.

d. The wave painter.
Transforming and combining painters

An operation on painters (such as flip-vert Or beside)
works by creating a painter that invokes the original
painters with respect to frames derived from the argument
frame. Thus, for example, f1i p-vert doesn't have to know
how a painter works in order to flip it -- it just has to know
how to turn a frame upside down: The flipped painter just
uses the original painter, but in the inverted frame.

Painter operations are based on the procedure transform
pai nter, which takes as arguments a painter and
information on how to transform a frame and produces a
new painter. The transformed painter, when called on a
frame, transforms the frame and calls the original painter
on the transformed frame. The arguments to transform
pai nt er are points (represented as vectors) that specify the
corners of the new frame: When mapped into the frame,

the first point specifies the new frame's origin and the other
two specify the ends of its edge vectors. Thus, arguments
within the unit square specify a frame contained within the
original frame.

(define (transformpainter painter origin cornerl corr

(I anbda (frane)
(let ((m(frame-coord-map frane)))

(let ((neworigin (morigin)))

(painter
(make-frame neworigin

(sub-vect (mcornerl) neworigin)

(sub-vect (mcorner2) neworigin)))))))
Here's how to flip painter images vertically:

(define (flip-vert painter)
(transformpai nter painter
(make-vect 0.0 1.0)
; new origin
(make-vect 1.0 1.0)
; new end of edgel
(make-vect 0.0 0.0)))
; new end of edge2

Using transformpainter, we can easily define new
transformations. For example, we can define a painter that
shrinks its image to the upper-right quarter of the frame it
is given:

(define (shrink-to-upper-right painter)

(transform pai nter painter
(make-vect 0.5 0.5)

(make-vect 1.0 0.5)

(make-vect 0.5 1.0)))

Other transformations rotate images counterclockwise by
90 degrees™

(define (rotate90 painter)
(transformpai nter painter
(make-vect 1.0 0.0)

(make-vect 1.0 1.0)
(make-vect 0.0 0.0)))

or squash images towards the center of the frame:®

(define (squash-inwards painter)
transform pai nter painter
(p p
(make-vect 0.0 0.0)

(make-vect 0.65 0. 35)

(make-vect 0.35 0.65)))

Frame transformation is also the key to defining means of
combining two or more painters. The besi de procedure, for

29 Rotate90 is a pure rotation only for square frames, because it also
stretches and shrinks the image to fit into the rotated frame.

30 The diamond-shaped images in figures 2.10 and 2.11 were created
with squash-inwards applied to wave and rogers.

example, takes two painters, transforms them to paintin the
left and right halves of an argument frame respectively, and
produces a new, compound painter. When the compound
painter is given a frame, it calls the first transformed painter
to paint in the left half of the frame and calls the second
transformed painter to paint in the right half of the frame:

(define (beside painterl painter2)
(let ((split-point (make-vect 0.5 0.0)))

(let ((paint-left
(transformpainter painterl

(make-vect 0.0 0.0)
split-point
(make-vect 0.0 1.0)))
(paint-right
(transformpainter painter2
split-point
(make-vect 1.0 0.0)
(make-vect 0.5 1.0))))

(I anbda (frane)
(paint-left frane)

(paint-right frane)))))

Observe how the painter data abstraction, and in particular
the representation of painters as procedures, makes besi de
easy to implement. The besi de procedure need not know
anything about the details of the component painters other
than that each painter will draw something in its designated
frame.

Exercise 2.50. Define the transformation flip-horiz,
which flips painters horizontally, and transformations that
rotate painters counterclockwise by 180 degrees and 270
degrees.

Exercise 2.51. Define the bel ow operation for painters.
Bel ow takes two painters as arguments. The resulting
painter, given a frame, draws with the first painter in the
bottom of the frame and with the second painter in the
top. Define bel ow in two different ways -- first by writing a
procedure that is analogous to the besi de procedure given
above, and again in terms of besi de and suitable rotation
operations (from exercise 2.50).

Levels of language for robust design

The picture language exercises some of the critical
ideas we've introduced about abstraction with procedures
and data. The fundamental data abstractions, painters,
are implemented using procedural representations, which
enables the language to handle different basic drawing
capabilities in a uniform way. The means of combination
satisfy the closure property, which permits us to easily build

up complex designs. Finally, all the tools for abstracting
procedures are available to us for abstracting means of
combination for painters.

We have also obtained a glimpse of another crucial idea
about languages and program design. This is the approach
of stratified design, the notion that a complex system should
be structured as a sequence of levels that are described
using a sequence of languages. Each level is constructed
by combining parts that are regarded as primitive at that
level, and the parts constructed at each level are used as
primitives at the next level. The language used at each level
of a stratified design has primitives, means of combination,
and means of abstraction appropriate to that level of detail.

Stratified design pervades the engineering of complex
systems. For example, in computer engineering, resistors
and transistors are combined (and described using a
language of analog circuits) to produce parts such
as and-gates and or-gates, which form the primitives

of a language for digital-circuit design.** These parts
are combined to build processors, bus structures, and
memory systems, which are in turn combined to form
computers, using languages appropriate to computer
architecture. Computers are combined to form distributed
systems, using languages appropriate for describing
network interconnections, and so on.

31 Section 3.3.4 describes one such language.

As a tiny example of stratification, our picture language
uses primitive elements (primitive painters) that are created
using a language that specifies points and lines to provide
the lists of line segments for segnents->painter, or the
shading details for a painter like rogers. The bulk of our
description of the picture language focused on combining
these primitives, using geometric combiners such as
besi de and bel ow. We also worked at a higher level,
regarding besi de and bel owas primitives to be manipulated
in a language whose operations, such as square-of -
four, capture common patterns of combining geometric
combiners.

Stratified design helps make programs robust, that is, it
makes it likely that small changes in a specification will
require correspondingly small changes in the program.
For instance, suppose we wanted to change the image
based on wave shown in figure 2.9. We could work at the
lowest level to change the detailed appearance of the wave
element; we could work at the middle level to change the
way cor ner - spl i t replicates the wave; we could work at the
highest level to change how square-1i i t arranges the four
copies of the corner. In general, each level of a stratified
design provides a different vocabulary for expressing the
characteristics of the system, and a different kind of ability
to change it.

Exercise 2.52. Make changes to the square limit of
wave shown in figure 2.9 by working at each of the levels
described above. In particular:

a. Add some segments to the primitive wave painter of
exercise 2.49 (to add a smile, for example).

b. Change the pattern constructed by corner-split (for
example, by using only one copy of the up-split andri ght -
split images instead of two).

c. Modify the version of square-1init that uses squar e- of -
four SO as to assemble the corners in a different pattern.
(For example, you might make the big Mr. Rogers look
outward from each corner of the square.)

2.3 Symbolic Data

All the compound data objects we have used so far were
constructed ultimately from numbers. In this section we
extend the representational capability of our language by
introducing the ability to work with arbitrary symbols as
data.

2.3.1 Quotation
If we can form compound data using symbols, we can have
lists such as

(a b cd
(23 45 17)

((Norah 12) (Molly 9) (Anna 7) (Lauren 6) (Charlotte 4))

Lists containing symbols can look just like the expressions
of our language:

(* (+ 23 45) (+x 9))

(define (fact n) (if (=n 1) 1 (* n (fact (- n 1)))))

In order to manipulate symbols we need a new element in
our language: the ability to quote a data object. Suppose
we want to construct the list (a b) . We can't accomplish this
with (1i st a b), because this expression constructs a list of
the values of a and b rather than the symbols themselves.
This issue is well known in the context of natural languages,
where words and sentences may be regarded either as
semantic entities or as character strings (syntactic entities).
The common practice in natural languages is to use
quotation marks to indicate that a word or a sentence is to
be treated literally as a string of characters. For instance,
the first letter of "John" is clearly "J." If we tell somebody
"say your name aloud,"” we expect to hear that person's
name. However, if we tell somebody "say ‘your name'
aloud,"” we expect to hear the words "your name." Note that
we are forced to nest quotation marks to describe what

somebody else might say.*

32 Allowing quotation in a language wreaks havoc with the ability to reason
about the language in simple terms, because it destroys the notion that
equals can be substituted for equals. For example, three is one plus two,
but the word "three" is not the phrase "one plus two." Quotation is powerful

We can follow this same practice to identify lists and
symbols that are to be treated as data objects rather
than as expressions to be evaluated. However, our format
for quoting differs from that of natural languages in that
we place a quotation mark (traditionally, the single quote
symbol ') only at the beginning of the object to be quoted.
We can get away with this in Scheme syntax because we
rely on blanks and parentheses to delimit objects. Thus, the
meaning of the single quote character is to quote the next

object.*

Now we can distinguish between symbols and their values:
(define a 1)

(define b 2)

(list a b)

because it gives us a way to build expressions that manipulate other
expressions (as we will see when we write an interpreter in chapter 4). But
allowing statements in a language that talk about other statements in that
language makes it very difficult to maintain any coherent principle of what
"equals can be substituted for equals" should mean. For example, if we
know that the evening star is the morning star, then from the statement
"the evening star is Venus" we can deduce "the morning star is Venus."
However, given that "John knows that the evening star is Venus" we
cannot infer that "John knows that the morning star is Venus."

33 The single quote is different from the double quote we have been using
to enclose character strings to be printed. Whereas the single quote can
be used to denote lists or symbols, the double quote is used only with
character strings. In this book, the only use for character strings is as items
to be printed.

(12)

(list "a 'b)
(a b)
(list "a b)
(a 2)

Quotation also allows us to type in compound objects, using
the conventional printed representation for lists:**

(car '(a b c¢))

a

(cdr "(a b c))

(b c)

In keeping with this, we can obtain the empty list by
evaluating ' (), and thus dispense with the variable ni | .

34 Strictly, our use of the quotation mark violates the general rule
that all compound expressions in our language should be delimited by
parentheses and look like lists. We can recover this consistency by
introducing a special form quote, which serves the same purpose as
the quotation mark. Thus, we would type (quote a) instead of 'a, and
we would type (quote (a b c)) instead of '(a b c). This is precisely
how the interpreter works. The quotation mark is just a single-character
abbreviation for wrapping the next complete expression with quote to
form (quote <expression>). This is important because it maintains the
principle that any expression seen by the interpreter can be manipulated
as a data object. For instance, we could construct the expression (car
'(a b ¢)), which is the same as (car (quote (a b c))), by evaluating
(list "car (list 'quote ‘(a b c))).

One additional primitive used in manipulating symbols is
eq?, which takes two symbols as arguments and tests

whether they are the same.* Using eq?, we can implement
a useful procedure called nery. This takes two arguments,
a symbol and a list. If the symbol is not contained in the
list (i.e., is not eq? to any item in the list), then neny returns
false. Otherwise, it returns the sublist of the list beginning
with the first occurrence of the symbol:

(define (meng item x)
(cond ((null? x) fal se)
((eg? item (car x)) x)

(else (meng item (cdr x)))))
For example, the value of
(nmengy ' appl e ' (pear banana prune))
is false, whereas the value of
(meng 'apple '(x (apple sauce) y apple pear))
iS (appl e pear).

Exercise 2.53. What would the interpreter print in
response to evaluating each of the following expressions?

(list "a'b 'c)

35 We can consider two symbols to be "the same" if they consist of the
same characters in the same order. Such a definition skirts a deep issue
that we are not yet ready to address: the meaning of "sameness" in a
programming language. We will return to this in chapter 3 (section 3.1.3).

(list (list 'george))
(cdr " ((x1 x2) (yly2)))

(cadr " ((x1 x2) (yly2)))
(pair? (car '(a short list)))
(meng 'red ' ((red shoes) (blue socks)))

(meng 'red ' (red shoes bl ue socks))

Exercise 2.54. Two lists are said to be equal ? if they
contain equal elements arranged in the same order. For
example,

(equal ? '(this is alist) '(thisis alist))

is true, but

(equal ? '(this is a list) '"(this (is a) list))

is false. To be more precise, we can define equal ?
recursively in terms of the basic eq? equality of symbols by
saying that a and b are equal ? if they are both symbols and
the symbols are eq?, or if they are both lists such that (car
a) iS equal ? to (car b) and (cdr a) iS equal ? tO (cdr b).
Using this idea, implement equal 2 as a procedure.*

36 In practice, programmers use equal? to compare lists that contain
numbers as well as symbols. Numbers are not considered to be symbols.
The question of whether two numerically equal numbers (as tested by =)
are also eg? is highly implementation-dependent. A better definition of
equal? (such as the one that comes as a primitive in Scheme) would also
stipulate that if a and b are both numbers, then a and b are equal? if they
are numerically equal.

Exercise 2.55. Eva Lu Ator types to the interpreter the
expression

(car "abracadabr a)

To her surprise, the interpreter prints back quot e. Explain.
2.3.2 Example: Symbolic Differentiation

As an illustration of symbol manipulation and a further
illustration of data abstraction, consider the design of
a procedure that performs symbolic differentiation of
algebraic expressions. We would like the procedure to take
as arguments an algebraic expression and a variable and
to return the derivative of the expression with respect to the
variable. For example, if the arguments to the procedure

are axX’ + bx + ¢ and x, the procedure should return
2ax + b. Symbolic differentiation is of special historical
significance in Lisp. It was one of the motivating examples
behind the development of a computer language for
symbol manipulation. Furthermore, it marked the beginning
of the line of research that led to the development of
powerful systems for symbolic mathematical work, which
are currently being used by a growing number of applied
mathematicians and physicists.

In developing the symbolic-differentiation program, we
will follow the same strategy of data abstraction that
we followed in developing the rational-number system of
section 2.1.1. That is, we will first define a differentiation
algorithm that operates on abstract objects such as "sums,"

"products,” and "variables" without worrying about how
these are to be represented. Only afterward will we address
the representation problem.

The differentiation program with abstract
data

In order to keep things simple, we will consider a
very simple symbolic-differentiation program that handles
expressions that are built up using only the operations
of addition and multiplication with two arguments.
Differentiation of any such expression can be carried out
by applying the following reduction rules:

E=Dforcaccnstantcramiablediﬂferentimmr
dF
— =1
dF
diu+ u) _ fﬂ_u_l_ﬂ
dr dr | dr
d{uw) _ r’du) du)
dr _ul'udr +u(dr

Observe that the latter two rules are recursive in nature.
That is, to obtain the derivative of a sum we first find
the derivatives of the terms and add them. Each of
the terms may in turn be an expression that needs to
be decomposed. Decomposing into smaller and smaller

pieces will eventually produce pieces that are either
constants or variables, whose derivatives will be either 0
or 1.

To embody these rules in a procedure we indulge in a little
wishful thinking, as we did in designing the rational-number
implementation. If we had a means for representing
algebraic expressions, we should be able to tell whether an
expression is a sum, a product, a constant, or a variable.
We should be able to extract the parts of an expression. For
a sum, for example we want to be able to extract the addend
(first term) and the augend (second term). We should also
be able to construct expressions from parts. Let us assume
that we already have procedures to implement the following
selectors, constructors, and predicates:

(variable? e) Is e a variable?

(same-variable? v1 v2) Are v1 and v2 the same
variable?

(sum? e) Is e a sum?

(addend e) Addend of the sum e.

(augend e) Augend of the sum e.

(make-sum al a2) Construct the sum of al and
az.

(product? e) Is e a product?

(multiplier e) Multiplier of the product e.

(multiplicand e) Multiplicand of the product e.

(make-product m1 m2) Construct the product of m1

and m2.

Using these, and the primitive predicate nunber?, which
identifies numbers, we can express the differentiation rules
as the following procedure:

(define (deriv exp var)
(cond ((nunber? exp) 0)
((vari abl e? exp)
(if (same-variable? exp var) 1 0))
((sunP exp)
(make-sum (deriv (addend exp) var)
(deriv (augend exp) var)))
((product? exp)
(make-sum
(make-product (rultiplier exp)
(deriv (multiplicand exp) var))
(make-product (deriv (multiplier exp) var)
(rmul tiplicand exp))))

(el se
(error "unknown expression type -- DERI V' exp))))

This deriv procedure incorporates the complete
differentiation algorithm. Since it is expressed in terms of
abstract data, it will work no matter how we choose to
represent algebraic expressions, as long as we design a

proper set of selectors and constructors. This is the issue
we must address next.

Representing algebraic expressions

We can imagine many ways to use list structure to
represent algebraic expressions. For example, we could
use lists of symbols that mirror the usual algebraic
notation, representing ax + b as the list (a * x + b).
However, one especially straightforward choice is to use
the same parenthesized prefix notation that Lisp uses for
combinations; that is, to representax + b as (+ (* a x) b).
Then our data representation for the differentiation problem
is as follows:

The variables are symbols. They are identified by the
primitive predicate synbol ?:
(define (variable? x) (synbol? X))

Two variables are the same if the symbols representing

them are eq?:
(define (same-variable? vl v2)
(and (variable? vl1) (variable? v2) (eq? vl v2)))

Sums and products are constructed as lists:
(define (make-sumal a2) (list '+ al a2))

(define (make-product mL n2) (list '* nil nR))

A sum is a list whose first element is the symbol +:
(define (sun®? x)
(and (pair? x) (eq? (car x) '+4)))

The addend is the second item of the sum list:
(define (addend s) (cadr s))

The augend is the third item of the sum list:
(define (augend s) (caddr s))

A product is a list whose first element is the symbol *:
(define (product? x)
(and (pair? x) (eqg? (car x) '*)))

The multiplier is the second item of the product list:
(define (multiplier p) (cadr p))

The multiplicand is the third item of the product list:
(define (multiplicand p) (caddr p))

Thus, we need only combine these with the algorithm as
embodied by deriv in order to have a working symbolic-
differentiation program. Let us look at some examples of
its behavior:

(deriv '(+ x 3) 'Xx)

(+10)

(deriv '(* xvy) "X)

(+ (* x0) (*1y))

(deriv "(* (* xy) (+x 3)) 'x)

(+ (* (* xy) (+10)
(" (+ (" x0) (*1y))
(+ x3)))

The program produces answers that are correct; however,
they are unsimplified. It is true that

dryl =r 041y
eh3
but we would like the program to know that x -0 =10, 1 -
y =V, and 0 + y =y. The answer for the second example
should have been simply y. As the third example shows,
this becomes a serious issue when the expressions are
complex.

Our difficulty is much like the one we encountered
with the rational-number implementation: we haven't
reduced answers to simplest form. To accomplish the
rational-number reduction, we needed to change only the
constructors and the selectors of the implementation. We
can adopt a similar strategy here. We won't change deri v
at all. Instead, we will change nake-sum so that if both
summands are numbers, make- sumwill add them and return
their sum. Also, if one of the summands is 0, then make- sun
will return the other summand.

(define (make-sum al a2)

(cond ((=nunber? al 0) a2)
((=nunmber? a2 0) al)

((and (nunmber? al) (nunber? a2)) (+ al a2))

(else (list '+ al a2))))

This uses the procedure =nunber ?, which checks whether
an expression is equal to a given number:

(define (=nurmber? exp num

(and (nunber? exp) (= exp num))

Similarly, we will change nake- pr oduct to build in the rules
that O times anything is 0 and 1 times anything is the thing
itself:

(define (make-product ml nR)
(cond ((or (=nunmber? ml 0) (=nunber? n2 0)) 0)

((=nunmber? mlL 1) nR)
((=nunmber? n2 1) ml)
((and (nunmber? ml) (nunber? nR)) (* ml nR))

(else (list '"* mL nR))))
Here is how this version works on our three examples:

(deriv '"(+ x 3) 'Xx)

1

(deriv '"(* xvy) "Xx)

y

(deriv "(* (* xy) (+x 3)) '"x)

(+(* xy) (*y (+x3)))

Although this is quite an improvement, the third example
shows that there is still a long way to go before we get a
program that puts expressions into a form that we might
agree is "simplest." The problem of algebraic simplification
is complex because, among other reasons, a form that may
be simplest for one purpose may not be for another.

Exercise 2.56. Show how to extend the basic differentiator
to handle more kinds of expressions. For instance,
implement the differentiation rule

df ") i fdu
i~ (3)

by adding a new clause to the deri v program and defining
appropriate procedures exponenti ation?, base, exponent,
and nake- exponentiation. (You may use the symbol **
to denote exponentiation.) Build in the rules that anything
raised to the power 0 is 1 and anything raised to the power
1 is the thing itself.

Exercise 2.57. Extend the differentiation program to
handle sums and products of arbitrary numbers of (two
or more) terms. Then the last example above could be
expressed as

(deriv "(* xy (+x 3)) "x)

Try to do this by changing only the representation for sums
and products, without changing the deri v procedure at all.
For example, the addend of a sum would be the first term,
and the augend would be the sum of the rest of the terms.

Exercise 2.58. Suppose we want to modify the
differentiation program so that it works with ordinary
mathematical notation, in which + and * are infix rather
than prefix operators. Since the differentiation program
is defined in terms of abstract data, we can modify it to
work with different representations of expressions solely by

changing the predicates, selectors, and constructors that
define the representation of the algebraic expressions on
which the differentiator is to operate.

a. Show how to do this in order to differentiate algebraic
expressions presented in infix form, such as (x + (3 * (x
+ (y + 2)))). To simplify the task, assume that + and *
always take two arguments and that expressions are fully
parenthesized.

b. The problem becomes substantially harder if we allow
standard algebraic notation, such as (x + 3 * (x + vy +
2)), which drops unnecessary parentheses and assumes
that multiplication is done before addition. Can you design
appropriate predicates, selectors, and constructors for this
notation such that our derivative program still works?

2.3.3 Example: Representing Sets

In the previous examples we built representations for two
kinds of compound data objects: rational numbers and
algebraic expressions. In one of these examples we had
the choice of simplifying (reducing) the expressions at
either construction time or selection time, but other than
that the choice of a representation for these structures in
terms of lists was straightforward. When we turn to the
representation of sets, the choice of a representation is
not so obvious. Indeed, there are a number of possible
representations, and they differ significantly from one
another in several ways.

Informally, a set is simply a collection of distinct objects. To
give a more precise definition we can employ the method of
data abstraction. That is, we define "set" by specifying the
operations that are to be used on sets. These are uni on-
set, i ntersection-set, el ement-of-set?, and adj oi n-set.
El enent - of -set ? iS a predicate that determines whether
a given element is a member of a set. Adj oi n-set takes
an object and a set as arguments and returns a set
that contains the elements of the original set and also
the adjoined element. Uni on-set computes the union of
two sets, which is the set containing each element that
appears in either argument. I ntersection-set computes
the intersection of two sets, which is the set containing
only elements that appear in both arguments. From the
viewpoint of data abstraction, we are free to design any
representation that implements these operations in a way

consistent with the interpretations given above.*’
Sets as unordered lists

One way to represent a set is as a list of its elements
in which no element appears more than once. The
empty set is represented by the empty list. In this
representation, el enent - of - set 2 is similar to the procedure

37 If we want to be more formal, we can specify "consistent with
the interpretations given above" to mean that the operations satisfy a
collection of rules such as these:

nmemy of section 2.3.1. It uses equal ? instead of eq? so that
the set elements need not be symbols:
(define (el ement-of-set? x set)

(cond ((null? set) false)
((equal ? x (car set)) true)

(el se (elenent-of-set? x (cdr set)))))

Using this, we can write adj oi n-set. If the object to be
adjoined is already in the set, we just return the set.
Otherwise, we use cons to add the object to the list that
represents the set:
(define (adjoin-set x set)
(if (elenent-of-set? x set)

set

(cons x set)))
For i ntersecti on-set we can use a recursive strategy. If
we know how to form the intersection of set2 and the cdr
of set 1, we only need to decide whether to include the car
of set 1 in this. But this depends on whether (car set1) is
also in set 2. Here is the resulting procedure:

(define (intersection-set setl set?2)
(cond ((or (null? setl) (null? set2)) '())
((el enent-of -set? (car setl) set?2)
(cons (car setl)

(intersection-set (cdr setl) set2)))

(el se (intersection-set (cdr setl) set2))))

In designing a representation, one of the issues we should
be concerned with is efficiency. Consider the number of
steps required by our set operations. Since they all use
el enent - of - set ?, the speed of this operation has a major
impact on the efficiency of the set implementation as a
whole. Now, in order to check whether an object is a
member of a set, el enent - of - set ? may have to scan the
entire set. (In the worst case, the object turns out not to be
in the set.) Hence, if the set has n elements, el ement - of -
set ? might take up to n steps. Thus, the number of steps

required grows as El(n). The number of steps required
by adj oi n-set, which uses this operation, also grows as

E'(n) For intersection-set, which does an el enent - of -
set ? check for each element of set 1, the number of steps
required grows as the product of the sizes of the sets

involved, or El(nz) for two sets of size n. The same will be
true of uni on- set .

Exercise 2.59. Implement the uni on- set operation for the
unordered-list representation of sets.

Exercise 2.60. We specified that a set would be
represented as a list with no duplicates. Now suppose
we allow duplicates. For instance, the set {1,2,3} could
be represented as the list (2 3 2 1 3 2 2). Design
procedures el ement - of - set ?, adj oi n-set, uni on-set, and
i ntersection-set that operate on this representation. How
does the efficiency of each compare with the corresponding

procedure for the non-duplicate representation? Are there
applications for which you would use this representation in
preference to the non-duplicate one?

Sets as ordered lists

One way to speed up our set operations is to change
the representation so that the set elements are listed
in increasing order. To do this, we need some way to
compare two objects so that we can say which is bigger.
For example, we could compare symbols lexicographically,
or we could agree on some method for assigning a unique
number to an object and then compare the elements
by comparing the corresponding numbers. To keep our
discussion simple, we will consider only the case where
the set elements are numbers, so that we can compare
elements using > and <. We will represent a set of numbers
by listing its elements in increasing order. Whereas our
first representation above allowed us to represent the set
{1,3,6,10} by listing the elements in any order, our new
representation allows only the list (1 3 6 10).

One advantage of ordering shows up in el enent - of - set 2: In
checking for the presence of an item, we no longer have to
scan the entire set. If we reach a set element that is larger
than the item we are looking for, then we know that the item
is not in the set:

(define (el ement-of-set? x set)

(cond ((null? set) false)
((= x (car set)) true)

((< x (car set)) false)

(el se (elenent-of-set? x (cdr set)))))

How many steps does this save? In the worst case, the
item we are looking for may be the largest one in the set,
so the number of steps is the same as for the unordered
representation. On the other hand, if we search for items
of many different sizes we can expect that sometimes
we will be able to stop searching at a point near the
beginning of the list and that other times we will still need
to examine most of the list. On the average we should
expect to have to examine about half of the items in the set.
Thus, the average number of steps required will be about

n/2. This is still El(n) growth, but it does save us, on the
average, a factor of 2 in number of steps over the previous
implementation.

We obtain a more impressive speedup with i nt er secti on-
set . In the unordered representation this operation required

El(nz) steps, because we performed a complete scan
of set2 for each element of set1. But with the ordered
representation, we can use a more clever method. Begin by
comparing the initial elements, x1 and x2, of the two sets. If
x1 equals x2, then that gives an element of the intersection,
and the rest of the intersection is the intersection of the
cdrs of the two sets. Suppose, however, that x1 is less
than x2. Since x2 is the smallest element in set2, we
can immediately conclude that x1 cannot appear anywhere

in set2 and hence is not in the intersection. Hence, the
intersection is equal to the intersection of set 2 with the cdr
of set 1. Similarly, if x2 is less than x1, then the intersection
is given by the intersection of set 1 with the cdr of set 2. Here
is the procedure:

(define (intersection-set setl set2)
(if (or (null? setl) (null? set2))
0
(let ((x1 (car set1)) (x2 (car set2)))
(cond ((= x1 x2)
(cons x1
(intersection-set (cdr setl)
(cdr set2))))
((< x1 x2)
(intersection-set (cdr setl) set2))
((< x2 x1)

(intersection-set setl (cdr set2)))))))

To estimate the number of steps required by this process,
observe that at each step we reduce the intersection
problem to computing intersections of smaller sets --
removing the first element from set 1 or set 2 or both. Thus,

the number of steps required is at most the sum of the
sizes of set 1 and set 2, rather than the product of the sizes

as with the unordered representation. This is E)(n) growth

rather than El(nz) -- a considerable speedup, even for sets
of moderate size.

Exercise 2.61. Give an implementation of adj oi n-set
using the ordered representation. By analogy with el enent -
of -set ? show how to take advantage of the ordering to
produce a procedure that requires on the average about
half as many steps as with the unordered representation.

Exercise 2.62. Give a &£)(n) implementation of uni on- set
for sets represented as ordered lists.

Sets as binary trees

We can do better than the ordered-list representation by
arranging the set elements in the form of a tree. Each node
of the tree holds one element of the set, called the "entry" at
that node, and a link to each of two other (possibly empty)
nodes. The "left" link points to elements smaller than the
one at the node, and the "right" link to elements greater
than the one at the node. Figure 2.16 shows some trees
that represent the set {1,3,5,7,9,11}. The same set may be
represented by a tree in a number of different ways. The
only thing we require for a valid representation is that all
elements in the left subtree be smaller than the node entry
and that all elements in the right subtree be larger.

Figure 2.16: Various binary trees that represent the set
{1,35,7,9,11}.

7

3/\9
AN

ANEA
5/\9
\

11
The advantage of the tree representation is this: Suppose
we want to check whether a number x is contained in a set.
We begin by comparing x with the entry in the top node.
If x is less than this, we know that we need only search
the left subtree; if x is greater, we need only search the
right subtree. Now, if the tree is "balanced," each of these
subtrees will be about half the size of the original. Thus, in
one step we have reduced the problem of searching a tree
of size n to searching a tree of size n/2. Since the size of
the tree is halved at each step, we should expect that the
number of steps needed to search a tree of size n grows as

=)(1 og n).*® For large sets, this will be a significant speedup
over the previous representations.

We can represent trees by using lists. Each node will be a
list of three items: the entry at the node, the left subtree, and
the right subtree. A left or a right subtree of the empty list will
indicate that there is no subtree connected there. We can

describe this representation by the following procedures:*

(define (entry tree) (car tree))

(define (left-branch tree) (cadr tree))
(define (right-branch tree) (caddr tree))
(define (make-tree entry left right)

(list entry left right))

Now we can write the el enent - of - set ? procedure using the
strategy described above:

(define (el ement-of-set? x set)
(cond ((null? set) false)

38 Halving the size of the problem at each step is the distinguishing
characteristic of logarithmic growth, as we saw with the fast-
exponentiation algorithm of section 1.2.4 and the half-interval search
method of section 1.3.3.

39 We are representing sets in terms of trees, and trees in terms of lists --
in effect, a data abstraction built upon a data abstraction. We can regard
the procedures entry, left-branch, right-branch, and make-tree as a way
of isolating the abstraction of a "binary tree" from the particular way we
might wish to represent such a tree in terms of list structure.

((= x (entry set)) true)
((< x (entry set))
(el ement-of -set? x (left-branch set)))
((> x (entry set))

(el enent-of -set? x (right-branch set)))))
Adjoining an item to a set is implemented similarly and also

requires El(l og n) steps. To adjoin an item x, we compare x
with the node entry to determine whether x should be added
to the right or to the left branch, and having adjoined x to the
appropriate branch we piece this newly constructed branch
together with the original entry and the other branch. If x is
equal to the entry, we just return the node. If we are asked
to adjoin x to an empty tree, we generate a tree that has
x as the entry and empty right and left branches. Here is
the procedure:

(define (adjoin-set x set)
(cond ((null? set) (make-tree x '() '()))

((=x (entry set)) set)
((< x (entry set))
(meke-tree (entry set)
(adjoin-set x (left-branch set))

(right-branch set)))

((> x (entry set))
(rmake-tree (entry set)
(left-branch set)

(adj oi n-set x (right-branch set))))))

The above claim that searching the tree can be performed
in a logarithmic number of steps rests on the assumption
that the tree is "balanced," i.e., that the left and the right
subtree of every tree have approximately the same number
of elements, so that each subtree contains about half the
elements of its parent. But how can we be certain that
the trees we construct will be balanced? Even if we start
with a balanced tree, adding elements with adj oi n-set
may produce an unbalanced result. Since the position of
a newly adjoined element depends on how the element
compares with the items already in the set, we can expect
that if we add elements "randomly" the tree will tend to
be balanced on the average. But this is not a guarantee.
For example, if we start with an empty set and adjoin the
numbers 1 through 7 in sequence we end up with the highly
unbalanced tree shown in figure 2.17. In this tree all the left
subtrees are empty, so it has no advantage over a simple
ordered list. One way to solve this problem is to define an
operation that transforms an arbitrary tree into a balanced
tree with the same elements. Then we can perform this
transformation after every few adjoi n-set operations to
keep our set in balance. There are also other ways to solve

this problem, most of which involve designing new data
structures for which searching and insertion both can be

done in £)(1 og n) steps.”

Figure 2.17: Unbalanced tree produced by adjoining 1 through 7 in
sequence.

1

40 Examples of such structures include B-trees and red-black trees.
There is a large literature on data structures devoted to this problem. See
Cormen, Leiserson, and Rivest 1990.

Exercise 2.63. Each of the following two procedures
converts a binary tree to a list.

(define (tree->list-1 tree)
(if (null? tree)
"0
(append (tree->list-1 (left-branch tree))

(cons (entry tree)
(tree->list-1 (right-branch tree))))))

(define (tree->list-2 tree)
(define (copy-to-list tree result-1list)

(if (null? tree)
result-1ist
(copy-to-list (left-branch tree)

(cons (entry tree)
(copy-to-list (right-branch tree)
result-list)))))

(copy-to-list tree '()))

a. Do the two procedures produce the same result for every
tree? If not, how do the results differ? What lists do the two
procedures produce for the trees in figure 2.167?

b. Do the two procedures have the same order of growth
in the number of steps required to convert a balanced tree

with n elements to a list? If not, which one grows more
slowly?

Exercise 2.64. The following procedure Iist->tree
converts an ordered list to a balanced binary tree. The
helper procedure partial-tree takes as arguments an
integer n and list of at least n elements and constructs a
balanced tree containing the first n elements of the list. The
result returned by parti al - tree is a pair (formed with cons)
whose car is the constructed tree and whose cdr is the list
of elements not included in the tree.

(define (list->tree el enents)
(car (partial-tree elements (length elenents))))

(define (partial-tree elts n)
(if (=no0
(cons '"() elts)
(let ((left-size (quotient (- n 1) 2)))
(let ((left-result (partial-tree elts left-si:
(let ((left-tree (car left-result))
(non-left-elts (cdr left-result))
(right-size (- n (+ left-size 1))))
(let ((this-entry (car non-left-elts))

(right-result (partial-tree (cdr nor

right-size)))

(let ((right-tree (car right-result))
(remaining-elts (cdr right-result)))
(cons (make-tree this-entry left-tree

remaining-elts))))))))

a. Write a short paragraph explaining as clearly as you can
how parti al -t ree works. Draw the tree produced by I i st -
>tree forthe list (1 3 5 7 9 11).

b. What is the order of growth in the number of steps
required by | i st - >t ree to convert a list of n elements?

Exercise 2.65. Use the results of exercises 2.63 and

2.64 to give El(n) implementations of uni on-set and
i ntersection-set for sets implemented as (balanced)

binary trees.*
Sets and information retrieval

We have examined options for using lists to represent sets
and have seen how the choice of representation for a
data object can have a large impact on the performance
of the programs that use the data. Another reason for
concentrating on sets is that the techniques discussed
here appear again and again in applications involving
information retrieval.

41 Exercises 2.63-2.65 are due to Paul Hilfinger.

Consider a data base containing a large number of
individual records, such as the personnel files for a
company or the transactions in an accounting system. A
typical data-management system spends a large amount
of time accessing or modifying the data in the records
and therefore requires an efficient method for accessing
records. This is done by identifying a part of each record
to serve as an identifying key. A key can be anything that
uniquely identifies the record. For a personnel file, it might
be an employee's ID number. For an accounting system, it
might be a transaction number. Whatever the key is, when
we define the record as a data structure we should include
a key selector procedure that retrieves the key associated
with a given record.

Now we represent the data base as a set of records. To
locate the record with a given key we use a procedure
| ookup, Which takes as arguments a key and a data base
and which returns the record that has that key, or false if
there is no such record. Lookup is implemented in almost
the same way as el enent - of - set 2. For example, if the set of
records is implemented as an unordered list, we could use

(define (| ookup given-key set-of-records)
(cond ((null? set-of-records) false)
((equal ? given-key (key (car set-of-records)))

(car set-of-records))

(el se (1 ookup given-key (cdr set-of-records)))))

Of course, there are better ways to represent large
sets than as unordered lists. Information-retrieval systems
in which records have to be "randomly accessed" are
typically implemented by a tree-based method, such
as the binary-tree representation discussed previously.
In designing such a system the methodology of data
abstraction can be a great help. The designer can create
an initial implementation using a simple, straightforward
representation such as unordered lists. This will be
unsuitable for the eventual system, but it can be useful in
providing a "quick and dirty" data base with which to test the
rest of the system. Later on, the data representation can
be modified to be more sophisticated. If the data base is
accessed in terms of abstract selectors and constructors,
this change in representation will not require any changes
to the rest of the system.

Exercise 2.66. Implement the | ookup procedure for the
case where the set of records is structured as a binary tree,
ordered by the numerical values of the keys.

2.3.4 Example: Huffman Encoding Trees

This section provides practice in the use of list structure
and data abstraction to manipulate sets and trees.
The application is to methods for representing data as
sequences of ones and zeros (bits). For example, the ASCII
standard code used to represent text in computers encodes
each character as a sequence of seven bits. Using seven

bits allows us to distinguish 27, or 128, possible different
characters. In general, if we want to distinguish n different
symbols, we will need to use | og, n bits per symbol. If all
our messages are made up of the eight symbols A, B, C,
D, E, F, G, and H, we can choose a code with three bits per
character, for example

A 000 C 010 E 100 G 110
B 001 D011 F 101 H111
BACADAEAFABBAAAGAH

is encoded as the string of 54 bits
0010000100000110001000001010000010010000000001

Codes such as ASCII and the A-through-H code above are
known as fixed-length codes, because they represent each
symbol in the message with the same number of bits. It
is sometimes advantageous to use variable-length codes,
in which different symbols may be represented by different
numbers of bits. For example, Morse code does not use
the same number of dots and dashes for each letter of
the alphabet. In particular, E, the most frequent letter, is
represented by a single dot. In general, if our messages are
such that some symbols appear very frequently and some
very rarely, we can encode data more efficiently (i.e., using
fewer bits per message) if we assign shorter codes to the
frequent symbols. Consider the following alternative code
for the letters A through H:

A0 C 1010 E 1100 G 1110

B 100 D 1011 F 1101 H 1111
100010100101101100011010100100000111001111

This string contains 42 bits, so it saves more than 20%
in space in comparison with the fixed-length code shown
above.

One of the difficulties of using a variable-length code is
knowing when you have reached the end of a symbol in
reading a sequence of zeros and ones. Morse code solves
this problem by using a special separator code (in this case,
a pause) after the sequence of dots and dashes for each
letter. Another solution is to design the code in such a way
that no complete code for any symbol is the beginning (or
prefix) of the code for another symbol. Such a code is called
a prefix code. In the example above, A is encoded by 0 and
B is encoded by 100, so no other symbol can have a code
that begins with O or with 100.

In general, we can attain significant savings if we use
variable-length prefix codes that take advantage of the
relative frequencies of the symbols in the messages to be
encoded. One particular scheme for doing this is called
the Huffman encoding method, after its discoverer, David
Huffman. A Huffman code can be represented as a binary
tree whose leaves are the symbols that are encoded. At
each non-leaf node of the tree there is a set containing
all the symbols in the leaves that lie below the node. In
addition, each symbol at a leaf is assigned a weight (which
is its relative frequency), and each non-leaf node contains

a weight that is the sum of all the weights of the leaves lying
below it. The weights are not used in the encoding or the
decoding process. We will see below how they are used to
help construct the tree.

Figure 2.18: A Huffman encoding tree.

(ABCDEF @ H} 17

{(BCDEF & H} 9

(B & D} &

{EF @ H} 4

[@ H} 2

&3 1 H 1
Figure 2.18 shows the Huffman tree for the A-through-H
code given above. The weights at the leaves indicate that
the tree was designed for messages in which A appears
with relative frequency 8, B with relative frequency 3, and
the other letters each with relative frequency 1.

Given a Huffman tree, we can find the encoding of any
symbol by starting at the root and moving down until we
reach the leaf that holds the symbol. Each time we move
down a left branch we add a 0 to the code, and each time
we move down a right branch we add a 1. (We decide which
branch to follow by testing to see which branch either is the
leaf node for the symbol or contains the symbol in its set.)
For example, starting from the root of the tree in figure 2.18,
we arrive at the leaf for D by following a right branch, then a
left branch, then a right branch, then a right branch; hence,
the code for D is 1011.

To decode a bit sequence using a Huffman tree, we begin
at the root and use the successive zeros and ones of the
bit sequence to determine whether to move down the left
or the right branch. Each time we come to a leaf, we have
generated a new symbol in the message, at which point we
start over from the root of the tree to find the next symbol.
For example, suppose we are given the tree above and the
sequence 10001010. Starting at the root, we move down
the right branch, (since the first bit of the string is 1), then
down the left branch (since the second bit is 0), then down
the left branch (since the third bit is also 0). This brings us to
the leaf for B, so the first symbol of the decoded message
is B. Now we start again at the root, and we make a left
move because the next bit in the string is 0. This brings us
to the leaf for A. Then we start again at the root with the
rest of the string 1010, so we move right, left, right, left and
reach C. Thus, the entire message is BAC.

Generating Huffman trees

Given an "alphabet" of symbols and their relative
frequencies, how do we construct the "best" code? (In
other words, which tree will encode messages with the
fewest bits?) Huffman gave an algorithm for doing this and
showed that the resulting code is indeed the best variable-
length code for messages where the relative frequency
of the symbols matches the frequencies with which the
code was constructed. We will not prove this optimality of
Huffman codes here, but we will show how Huffman trees

are constructed.”

The algorithm for generating a Huffman tree is very simple.
The idea is to arrange the tree so that the symbols with the
lowest frequency appear farthest away from the root. Begin
with the set of leaf nodes, containing symbols and their
frequencies, as determined by the initial data from which
the code is to be constructed. Now find two leaves with the
lowest weights and merge them to produce a node that has
these two nodes as its left and right branches. The weight
of the new node is the sum of the two weights. Remove the
two leaves from the original set and replace them by this
new node. Now continue this process. At each step, merge
two nodes with the smallest weights, removing them from
the set and replacing them with a node that has these two

42 See Hamming 1980 for a discussion of the mathematical properties of
Huffman codes.

as its left and right branches. The process stops when there
is only one node left, which is the root of the entire tree.
Here is how the Huffman tree of figure 2.18 was generated:

Initial leaves
Merge
Merge
Merge
Merge
Merge

Merge
Final merge

{(A8)(B3)(C1H(DI1(ED
(F1)(G1HL}
{(A8)(B3)({CD}2)(E) (F
1)(G1)HI}

{(A 8) (B 3) ({C D} 2) ({E F}
2)(G1 (HL}

{(A 8) (B 3) {C D} 2) ({E F}
2) ({G H} 2)}
{(A8)(B3)({CD}2){(EFG
H} 4)}

{(A8)({BCD}5) {EF GH}
4)}
{(A8){BCDEFGH}9}
{{ABCDEFG H}17)}

Representing Huffman trees

In the exercises below we will work with a system that
uses Huffman trees to encode and decode messages
and generates Huffman trees according to the algorithm
outlined above. We will begin by discussing how trees are

represented.

Leaves of the tree are represented by a list consisting of
the symbol | eaf , the symbol at the leaf, and the weight:

(define (nake-leaf synbol weight)

(list "leaf symbol weight))
(define (leaf? object)

(eq? (car object) 'leaf))
(define (synbol -leaf x) (cadr x))

(define (weight-leaf x) (caddr x))

A general tree will be a list of a left branch, a right branch,
a set of symbols, and a weight. The set of symbols will
be simply a list of the symbols, rather than some more
sophisticated set representation. When we make a tree by
merging two nodes, we obtain the weight of the tree as the
sum of the weights of the nodes, and the set of symbols as
the union of the sets of symbols for the nodes. Since our
symbol sets are represented as lists, we can form the union
by using the append procedure we defined in section 2.2.1:

(define (make-code-tree left right)

(list left
right
(append (synbols left) (synmbols right))

(+ (weight left) (weight right))))

If we make a tree in this way, we have the following
selectors:

(define (left-branch tree) (car tree))

(define (right-branch tree) (cadr tree))

(define (synbols tree)

(if (leaf? tree)
(list (synbol-leaf tree))

(caddr tree)))
(define (weight tree)
(if (leaf? tree)
(wei ght-1eaf tree)
(cadddr tree)))

The procedures synbol s and wei ght must do something
slightly different depending on whether they are called with
a leaf or a general tree. These are simple examples of
generic procedures (procedures that can handle more than
one kind of data), which we will have much more to say
about in sections 2.4 and 2.5.

The decoding procedure

The following procedure implements the decoding
algorithm. It takes as arguments a list of zeros and ones,
together with a Huffman tree.

(define (decode bits tree)
(define (decode-1 bits current-branch)

(if (null? bits)
"0
(let ((next-branch
(choose-branch (car bits) current-branch)))

(if (1eaf? next-branch)

(cons (synbol -1 eaf next-branch)

(decode-1 (cdr bits) tree))
(decode-1 (cdr bits) next-branch)))))

(decode-1 bits tree))
(define (choose-branch bit branch)
(cond ((= bit 0) (left-branch branch))

((= bit 1) (right-branch branch))

(else (error "bad bit -- CHOOSE- BRANCH' bit))))

The procedure decode- 1 takes two arguments: the list of
remaining bits and the current position in the tree. It keeps
moving "down" the tree, choosing a left or a right branch
according to whether the next bit in the list is a zero or
a one. (This is done with the procedure choose- branch.)
When it reaches a leaf, it returns the symbol at that leaf as
the next symbol in the message by consing it onto the result
of decoding the rest of the message, starting at the root of
the tree. Note the error check in the final clause of choose-
br anch, which complains if the procedure finds something
other than a zero or a one in the input data.

Sets of weighted elements

In our representation of trees, each non-leaf node contains
a set of symbols, which we have represented as a simple
list. However, the tree-generating algorithm discussed
above requires that we also work with sets of leaves and
trees, successively merging the two smallest items. Since
we will be required to repeatedly find the smallest item in

a set, it is convenient to use an ordered representation for
this kind of set.

We will represent a set of leaves and trees as a list
of elements, arranged in increasing order of weight. The
following adj oi n-set procedure for constructing sets is
similar to the one described in exercise 2.61; however,
items are compared by their weights, and the element being
added to the set is never already in it.

(define (adjoin-set x set)

(cond ((null? set) (list x))
((< (weight x) (weight (car set))) (cons x set))

(el se (cons (car set)

(adj oin-set x (cdr set))))))

The following procedure takes a list of symbol-frequency
pairs suchas ((A 4) (B 2) (C1) (D 1)) and constructs an
initial ordered set of leaves, ready to be merged according
to the Huffman algorithm:

(define (nake-I|eaf-set pairs)
(if (null? pairs)
"0
(let ((pair (car pairs)))

(adj oi n-set (make-leaf (car pair)
; synmbo
(cadr pair))
; frequency
(make-1 eaf-set (cdr pairs))))))

Exercise 2.67. Define an encoding tree and a sample
message:
(define sanple-tree

(make-code-tree (nake-leaf 'A 4)
(make-code-tree

(make-1eaf 'B 2)
(make-code-tree (nake-leaf 'D 1)

(make-leaf 'C 1)))))

(define sanple-nessage '(0110010101110))

Use the decode procedure to decode the message, and give
the result.

Exercise 2.68. The encode procedure takes as arguments
amessage and a tree and produces the list of bits that gives
the encoded message.
(define (encode nessage tree)
(if (null? message)
"0

(append (encode-synbol (car nmessage) tree)

(encode (cdr nessage) tree))))

Encode-synbol iSs a procedure, which you must write,
that returns the list of bits that encodes a given symbol
according to a given tree. You should design encode- synbol
so that it signals an error if the symbol is not in the tree at all.
Test your procedure by encoding the result you obtained in

exercise 2.67 with the sample tree and seeing whether it is
the same as the original sample message.

Exercise 2.69. The following procedure takes as its
argument a list of symbol-frequency pairs (where no
symbol appears in more than one pair) and generates a
Huffman encoding tree according to the Huffman algorithm.

(define (generate-huffman-tree pairs)

(successi ve-nerge (make-leaf-set pairs)))

Make- | eaf - set iSthe procedure given above that transforms
the list of pairs into an ordered set of leaves. Successi ve-
mer ge iS the procedure you must write, using nmake- code-
tree to successively merge the smallest-weight elements
of the set until there is only one element left, which is
the desired Huffman tree. (This procedure is slightly tricky,
but not really complicated. If you find yourself designing
a complex procedure, then you are almost certainly doing
something wrong. You can take significant advantage of
the fact that we are using an ordered set representation.)

Exercise 2.70. The following eight-symbol alphabet with
associated relative frequencies was designed to efficiently
encode the lyrics of 1950s rock songs. (Note that the
"symbols" of an "alphabet" need not be individual letters.)

A 2 NA 16
BOOM 1 SHA 3
GET 2 YIP 9
JOB 2 WAH 1

Use generate-huffman-tree (exercise 2.69) to generate
a corresponding Huffman tree, and use encode
(exercise 2.68) to encode the following message:

Get a job
Sha na na na na na na na na
Get a job
Sha na na na na na na na na

Wah yip yip yip yip yip yip yip yip yip
Sha boom

How many bits are required for the encoding? What is the
smallest number of bits that would be needed to encode
this song if we used a fixed-length code for the eight-symbol
alphabet?

Exercise 2.71. Suppose we have a Huffman tree for an
alphabet of n symbols, and that the relative frequencies of

the symbols are 1, 2, 4, ..., 2". Sketch the tree for n=5;
for n=10. In such a tree (for general n) how may bits are
required to encode the most frequent symbol? the least
frequent symbol?

Exercise 2.72. Consider the encoding procedure that you
designed in exercise 2.68. What is the order of growth in
the number of steps needed to encode a symbol? Be sure
to include the number of steps needed to search the symbol
list at each node encountered. To answer this question in

general is difficult. Consider the special case where the
relative frequencies of the n symbols are as described in
exercise 2.71, and give the order of growth (as a function
of n) of the number of steps needed to encode the most
frequent and least frequent symbols in the alphabet.

2.4 Multiple Representations for
Abstract Data

We have introduced data abstraction, a methodology
for structuring systems in such a way that much of a
program can be specified independent of the choices
involved in implementing the data objects that the program
manipulates. For example, we saw in section 2.1.1 how to
separate the task of designing a program that uses rational
numbers from the task of implementing rational numbers
in terms of the computer language's primitive mechanisms
for constructing compound data. The key idea was to erect
an abstraction barrier -- in this case, the selectors and
constructors for rational numbers (make-rat, nunmer, denom)
-- that isolates the way rational numbers are used from their
underlying representation in terms of list structure. A similar
abstraction barrier isolates the details of the procedures
that perform rational arithmetic (add-rat, sub-rat, mul -rat,
and div-rat) from the "higher-level" procedures that use

rational numbers. The resulting program has the structure
shown in figure 2.1.

These data-abstraction barriers are powerful tools
for controlling complexity. By isolating the underlying
representations of data objects, we can divide the task of
designing a large program into smaller tasks that can be
performed separately. But this kind of data abstraction is
not yet powerful enough, because it may not always make
sense to speak of "the underlying representation” for a data
object.

For one thing, there might be more than one useful
representation for a data object, and we might like to
design systems that can deal with multiple representations.
To take a simple example, complex numbers may be
represented in two almost equivalent ways: in rectangular
form (real and imaginary parts) and in polar form
(magnitude and angle). Sometimes rectangular form is
more appropriate and sometimes polar form is more
appropriate. Indeed, it is perfectly plausible to imagine
a system in which complex numbers are represented in
both ways, and in which the procedures for manipulating
complex numbers work with either representation.

More importantly, programming systems are often
designed by many people working over extended periods
of time, subject to requirements that change over time. In
such an environment, it is simply not possible for everyone
to agree in advance on choices of data representation.

So in addition to the data-abstraction barriers that isolate
representation from use, we need abstraction barriers
that isolate different design choices from each other and
permit different choices to coexist in a single program.
Furthermore, since large programs are often created by
combining pre-existing modules that were designed in
isolation, we need conventions that permit programmers to
incorporate modules into larger systems additively, that is,
without having to redesign or reimplement these modules.

In this section, we will learn how to cope with data
that may be represented in different ways by different
parts of a program. This requires constructing generic
procedures -- procedures that can operate on data that
may be represented in more than one way. Our main
technique for building generic procedures will be to work
in terms of data objects that have type tags, that is, data
objects that include explicit information about how they
are to be processed. We will also discuss data-directed
programming, a powerful and convenient implementation
strategy for additively assembling systems with generic
operations.

We begin with the simple complex-number example. We
will see how type tags and data-directed style enable us
to design separate rectangular and polar representations
for complex numbers while maintaining the notion of an
abstract "complex-number" data object. We will accomplish
this by defining arithmetic procedures for complex numbers
(add- conpl ex, sub- conpl ex, mul - conpl ex, and di v- conpl ex)

in terms of generic selectors that access parts of a complex
number independent of how the number is represented.
The resulting complex-number system, as shown in
figure 2.19, contains two different kinds of abstraction
barriers. The "horizontal" abstraction barriers play the same
role as the ones in figure 2.1. They isolate "higher-level"
operations from "lower-level" representations. In addition,
there is a "vertical" barrier that gives us the ability to
separately design and install alternative representations.

Figure 2.19: Data-abstraction barriers in the complex-number
system.

Programs that use complex numbers

——| add—complex sub—complex mul—conplex div—complex |—

Complex-adthmetic package

Rectangular Polac
[sentation Coprescntation

List structure and primitive machioe adthmetic

In section 2.5 we will show how to use type tags and data-
directed style to develop a generic arithmetic package.
This provides procedures (add, nul, and so on) that can
be used to manipulate all sorts of "numbers" and can be
easily extended when a new kind of number is needed. In
section 2.5.3, we'll show how to use generic arithmetic in a
system that performs symbolic algebra.

2.4.1 Representations for Complex
Numbers

We will develop a system that performs arithmetic
operations on complex numbers as a simple but unrealistic
example of a program that uses generic operations. We
begin by discussing two plausible representations for
complex numbers as ordered pairs: rectangular form (real
part and imaginary part) and polar form (magnitude and

angle).” Section 2.4.2 will show how both representations
can be made to coexist in a single system through the use
of type tags and generic operations.

Like rational numbers, complex numbers are naturally
represented as ordered pairs. The set of complex numbers
can be thought of as a two-dimensional space with two
orthogonal axes, the "real" axis and the "imaginary" axis.
(See figure 2.20.) From this point of view, the complex

number z = x + iy (where i’ = - 1) can be thought of as the
point in the plane whose real coordinate is x and whose
imaginary coordinate is y. Addition of complex numbers
reduces in this representation to addition of coordinates:

43 In actual computational systems, rectangular form is preferable to polar
form most of the time because of roundoff errors in conversion between
rectangular and polar form. This is why the complex-number example is
unrealistic. Nevertheless, it provides a clear illustration of the design of
a system using generic operations and a good introduction to the more
substantial systems to be developed later in this chapter.

Real-part(z; + z3) = Real-part(z) + Real-part{ za)

Imaginary-part{z1+:2) = Inaginary-part{ 5; }4+-Imaginary-part{ zs)
When multiplying complex numbers, it is more natural to
think in terms of representing a complex number in polar
form, as a magnitude and an angle (r and A in figure 2.20).
The product of two complex numbers is the vector obtained
by stretching one complex number by the length of the other
and then rotating it through the angle of the other:

Magnitude] z; + z2) = Magnitude(z;) - Magnitude{ss)

A.ugle[:l ' E-'_::I = ﬁﬂglel[:ljj + J'!'LII.E]E:I{:'_::I

Thus, there are two different representations for complex
numbers, which are appropriate for different operations.
Yet, from the viewpoint of someone writing a program that
uses complex numbers, the principle of data abstraction
suggests that all the operations for manipulating complex
numbers should be available regardless of which
representation is used by the computer. For example, it is
often useful to be able to find the magnitude of a complex
number that is specified by rectangular coordinates.
Similarly, it is often useful to be able to determine the
real part of a complex number that is specified by polar
coordinates.

Figure 2.20: Complex numbers as points in the plane.

lmaginary

)) i
T R p I=Xtiy=re

— Real

X

To design such a system, we can follow the same
data-abstraction strategy we followed in designing the
rational-number package in section 2.1.1. Assume that
the operations on complex numbers are implemented in
terms of four selectors: real -part, i nag- part, magni t ude,
and angle. Also assume that we have two procedures
for constructing complex numbers: make-fromreal -i mag
returns a complex number with specified real and imaginary
parts, and nake- from mag- ang returns a complex number
with specified magnitude and angle. These procedures
have the property that, for any complex number z, both

(meke-fromreal -imag (real -part z) (imag-part z))

and

(make-from mag-ang (magni tude z) (angle z))
produce complex numbers that are equal to z.

Using these constructors and selectors, we can implement
arithmetic on complex numbers using the "abstract data"
specified by the constructors and selectors, just as we
did for rational numbers in section 2.1.1. As shown in
the formulas above, we can add and subtract complex
numbers in terms of real and imaginary parts while
multiplying and dividing complex numbers in terms of
magnitudes and angles:

(define (add-conplex z1 z2)
(make-fromreal -imag (+ (real-part z1) (real-part z:

(+ (imag-part z1) (inmag-part z2))))

(define (sub-conplex z1 z2)
(make-fromreal -imag (- (real-part z1l) (real-part z:

(- (imag-part z1) (inmag-part z2))))

(define (mul -conplex z1 z2)
(make-from mag-ang (* (magnitude z1) (negnitude z2))

(+ (angle z1) (angle z2))))

(define (div-conplex z1 z2)
(make-from mag-ang (/ (magnitude z1) (negnitude z2))

(- (angle z1l) (angle z2))))

To complete the complex-number package, we must
choose a representation and we must implement the

constructors and selectors in terms of primitive numbers
and primitive list structure. There are two obvious ways
to do this: We can represent a complex number in
"rectangular form" as a pair (real part, imaginary part) or in
"polar form" as a pair (magnitude, angle). Which shall we
choose?

In order to make the different choices concrete, imagine
that there are two programmers, Ben Bitdiddle and
Alyssa P. Hacker, who are independently designing
representations for the complex-number system. Ben
chooses to represent complex numbers in rectangular
form. With this choice, selecting the real and imaginary
parts of a complex number is straightforward, as is
constructing a complex number with given real and
imaginary parts. To find the magnitude and the angle, or to
construct a complex number with a given magnitude and
angle, he uses the trigonometric relations

r=r cos A =42

y=r7 sin A A = arctan(y, r)
which relate the real and imaginary parts (X, y) to the

magnitude and the angle (r, A).* Ben's representation is
therefore given by the following selectors and constructors:

44 The arctangent function referred to here, computed by Scheme's atan
procedure, is defined so as to take two arguments y and x and to return

(define (real-part z) (car z))
(define (imag-part z) (cdr z))

(define (nmagnitude z)
(sqrt (+ (square (real-part z)) (square (inmag-part :

(define (angle z)
(atan (imag-part z) (real-part z)))

(define (nmake-fromreal-imag x y) (cons x y))
(define (make-from mag-ang r a)
(cons (* r (cos a)) (*r (sin a))))

Alyssa, in contrast, chooses to represent complex numbers
in polar form. For her, selecting the magnitude and angle
is straightforward, but she has to use the trigonometric
relations to obtain the real and imaginary parts. Alyssa's
representation is:

(define (real-part z)
(* (magnitude z) (cos (angle z))))

(define (imag-part z)
(* (magnitude z) (sin (angle z))))

(define (magnitude z) (car z))

(define (angle z) (cdr z))
(define (make-fromreal -imag x y)

the angle whose tangent is y/x. The signs of the arguments determine the
quadrant of the angle.

(cons (sqgrt (+ (square x) (square y)))

(atan y x)))

(define (nmake-frommag-ang r a) (cons r a))

The discipline of data abstraction ensures that the same
implementation of add- conpl ex, sub- conpl ex, nmul - conpl ex,
and di v- conpl ex will work with either Ben's representation
or Alyssa's representation.

2.4.2 Tagged data

One way to view data abstraction is as an application
of the "principle of least commitment." In implementing
the complex-number system in section 2.4.1, we can
use either Ben's rectangular representation or Alyssa's
polar representation. The abstraction barrier formed by the
selectors and constructors permits us to defer to the last
possible moment the choice of a concrete representation
for our data objects and thus retain maximum flexibility in
our system design.

The principle of least commitment can be carried to
even further extremes. If we desire, we can maintain the
ambiguity of representation even after we have designed
the selectors and constructors, and elect to use both
Ben's representation and Alyssa's representation. If both
representations are included in a single system, however,
we will need some way to distinguish data in polar form from
data in rectangular form. Otherwise, if we were asked, for

instance, to find the magni t ude of the pair (3,4), we wouldn't
know whether to answer 5 (interpreting the number in
rectangular form) or 3 (interpreting the number in polar
form). A straightforward way to accomplish this distinction
is to include a type tag -- the symbol rect angul ar or pol ar
-- as part of each complex number. Then when we need to
manipulate a complex number we can use the tag to decide
which selector to apply.

In order to manipulate tagged data, we will assume that we
have procedures type-tag and contents that extract from
a data object the tag and the actual contents (the polar or
rectangular coordinates, in the case of a complex humber).
We will also postulate a procedure attach-tag that takes
a tag and contents and produces a tagged data object. A
straightforward way to implement this is to use ordinary list
structure:

(define (attach-tag type-tag contents)

(cons type-tag contents))
(define (type-tag datum
(if (pair? datum
(car datum
(error "Bad tagged datum -- TYPE-TAG' datum)))

(define (contents datum
(if (pair? datum
(cdr datum
(error "Bad tagged datum -- CONTENTS" datum)))

Using these procedures, we can define predicates
rectangul ar? and pol ar?, which recognize polar and
rectangular numbers, respectively:
(define (rectangular? z)

(eq? (type-tag z) 'rectangul ar))
(define (polar? z)

(eq? (type-tag z) 'polar))
With type tags, Ben and Alyssa can now modify their code
so that their two different representations can coexist in
the same system. Whenever Ben constructs a complex
number, he tags it as rectangular. Whenever Alyssa
constructs a complex number, she tags it as polar. In
addition, Ben and Alyssa must make sure that the names
of their procedures do not conflict. One way to do this is
for Ben to append the suffix rectangul ar to the name of
each of his representation procedures and for Alyssa to
append pol ar to the names of hers. Here is Ben's revised
rectangular representation from section 2.4.1:

(define (real -part-rectangular z) (car z))
(define (imag-part-rectangular z) (cdr z))

(define (nagnitude-rectangul ar z)
(sqrt (+ (square (real-part-rectangular z))

(square (imag-part-rectangular z)))))
(define (angl e-rectangul ar z)

(atan (imag-part-rectangul ar z)
(real -part-rectangul ar z)))

(define (nmake-fromreal -i mag-rectangul ar x y)
(attach-tag 'rectangular (cons x y)))
(define (nake-from mag-ang-rectangular r a)

(attach-tag 'rectangul ar
(cons (* r (cos a)) (*r (sin a)))))

and here is Alyssa's revised polar representation:

(define (real -part-polar z)
(* (magni tude-polar z) (cos (angle-polar z))))

(define (imag-part-polar z)
(* (magni tude-polar z) (sin (angle-polar z))))

(define (magnitude-polar z) (car z))
(define (angle-polar z) (cdr z))
(define (make-fromreal -i mag-polar x y)

(attach-tag ' pol ar
(cons (sqgrt (+ (square x) (square y)))

(atany x))))

(define (make-from mag-ang-polar r a)

(attach-tag 'polar (cons r a)))

Each generic selector is implemented as a procedure that
checks the tag of its argument and calls the appropriate
procedure for handling data of that type. For example,
to obtain the real part of a complex number, real - part

examines the tag to determine whether to use Ben's real -
part-rectangul ar or Alyssa's real -part-polar. In either
case, we use cont ent s to extract the bare, untagged datum
and send this to the rectangular or polar procedure as
required:

(define (real -part z)
(cond ((rectangular? z)
(real -part-rectangul ar (contents z)))
((polar? z)
(real -part-polar (contents z)))
(el se (error "Unknown type -- REAL-PART" z))))
(define (imag-part z)
(cond ((rectangular? z)
(i mag-part-rectangul ar (contents z)))
((polar? z)
(i mag-part-polar (contents z)))
(el se (error "Unknown type -- | MAG PART" z))))
(define (nmagnitude z)
(cond ((rectangular? z)
(magni tude-rectangul ar (contents z)))
((polar? z)

(magni t ude-pol ar (contents z)))

(el se (error "Unknown type -- MAGNI TUDE" z))))

(define (angle z)
(cond ((rectangular? z)
(angl e-rectangul ar (contents z)))

((polar? z)
(angl e-polar (contents z)))

(el se (error "Unknown type -- ANGLE" z))))

To implement the complex-number arithmetic operations,
we can use the same procedures add-conplex, sub-
conpl ex, nul - conpl ex, and di v- conpl ex from section 2.4.1,
because the selectors they call are generic, and so will work
with either representation. For example, the procedure add-
conpl ex is still

(define (add-conplex z1 z2)
(make-fromreal -imag (+ (real-part zl) (real-part z:

(+ (imag-part z1) (imag-part z2))))

Finally, we must choose whether to construct complex
numbers using Ben's representation or Alyssa's
representation. One reasonable choice is to construct
rectangular numbers whenever we have real and imaginary
parts and to construct polar numbers whenever we have
magnitudes and angles:

(define (nake-fromreal -imag x y)

(make-fromreal -i mag-rectangular x y))
(define (make-frommag-ang r a)

(maeke-from nmag-ang-polar r a))
Figure 2.21: Structure of the generic complex-arithmetic system.

Programs that use complex numbers

—|add—c:omplex osub—complex mul—conplex div—c:omplexl—

Complex adthmetic package

real—part imag-parct

nagnitude angle

Rectangulac Polar
Epresentation [cpEscntation

List structuce and po mitive machine adthmetic

The resulting complex-number system has the structure
shown in figure 2.21. The system has been
decomposed into three relatively independent parts:
the complex-number-arithmetic operations, Alyssa's polar
implementation, and Ben's rectangular implementation.
The polar and rectangular implementations could have
been written by Ben and Alyssa working separately, and
both of these can be used as underlying representations by
a third programmer implementing the complex-arithmetic
procedures in terms of the abstract constructor/selector
interface.

Since each data object is tagged with its type, the
selectors operate on the data in a generic manner. That
is, each selector is defined to have a behavior that

depends upon the particular type of data it is applied
to. Notice the general mechanism for interfacing the
separate representations: Within a given representation
implementation (say, Alyssa's polar package) a complex
number is an untyped pair (magnitude, angle). When a
generic selector operates on a number of pol ar type, it
strips off the tag and passes the contents on to Alyssa's
code. Conversely, when Alyssa constructs a number for
general use, she tags it with a type so that it can be
appropriately recognized by the higher-level procedures.
This discipline of stripping off and attaching tags as data
objects are passed from level to level can be an important
organizational strategy, as we shall see in section 2.5.

2.4.3 Data-Directed Programming and
Additivity

The general strategy of checking the type of a datum and
calling an appropriate procedure is called dispatching on
type. This is a powerful strategy for obtaining modularity
in system design. Oh the other hand, implementing
the dispatch as in section 2.4.2 has two significant
weaknesses. One weakness is that the generic interface
procedures (real -part, i mag-part, magni tude, and angl e)
must know about all the different representations. For
instance, suppose we wanted to incorporate a new
representation for complex numbers into our complex-
number system. We would need to identify this new
representation with a type, and then add a clause to each of

the generic interface procedures to check for the new type
and apply the appropriate selector for that representation.

Another weakness of the technique is that even though
the individual representations can be designed separately,
we must guarantee that no two procedures in the entire
system have the same name. This is why Ben and Alyssa
had to change the names of their original procedures from
section 2.4.1.

The issue underlying both of these weaknesses is that
the technique for implementing generic interfaces is not
additive. The person implementing the generic selector
procedures must modify those procedures each time a
new representation is installed, and the people interfacing
the individual representations must modify their code to
avoid name conflicts. In each of these cases, the changes
that must be made to the code are straightforward, but
they must be made nonetheless, and this is a source
of inconvenience and error. This is not much of a
problem for the complex-number system as it stands, but
suppose there were not two but hundreds of different
representations for complex numbers. And suppose that
there were many generic selectors to be maintained in
the abstract-data interface. Suppose, in fact, that no
one programmer knew all the interface procedures or all
the representations. The problem is real and must be
addressed in such programs as large-scale data-base-
management systems.

What we need is a means for modularizing the system
design even further. This is provided by the programming
techniqgue known as data-directed programming. To
understand how data-directed programming works, begin
with the observation that whenever we deal with a set of
generic operations that are common to a set of different
types we are, in effect, dealing with a two-dimensional
table that contains the possible operations on one axis and
the possible types on the other axis. The entries in the
table are the procedures that implement each operation
for each type of argument presented. In the complex-
number system developed in the previous section, the
correspondence between operation name, data type, and
actual procedure was spread out among the various
conditional clauses in the generic interface procedures. But
the same information could have been organized in a table,
as shown in figure 2.22.

Data-directed programming is the technique of designing
programs to work with such a table directly. Previously, we
implemented the mechanism that interfaces the complex-
arithmetic code with the two representation packages as
a set of procedures that each perform an explicit dispatch
on type. Here we will implement the interface as a single
procedure that looks up the combination of the operation
name and argument type in the table to find the correct
procedure to apply, and then applies it to the contents of the
argument. If we do this, then to add a new representation

package to the system we need not change any existing
procedures; we need only add new entries to the table.

Figure 2.22: Table of operations for the complex-number system.

Types
Polar Rectangularc
real—part real—part—polar real—part—rectangular
% imag—parct imag-part—polarc imag—part—rcectangularc
g* magnitude nagnitude—polarc nagnitude—rectangularc
angle angle—polarc angle—rectangular

To implement this plan, assume that we have two
procedures, put and get, for manipulating the operation-
and-type table:

(put <op> <type> <itenp) installs the <itenms in the
table, indexed by the <op> and the <t ype>.

(get <op> <type>) looks up the <op>, <t ype> entry in
the table and returns the item found there. If no item is
found, get returns false.

For now, we can assume that put and get are included in
our language. In chapter 3 (section 3.3.3, exercise 3.24) we
will see how to implement these and other operations for
manipulating tables.

Here is how data-directed programming can be used in
the complex-number system. Ben, who developed the

rectangular representation, implements his code just as he
did originally. He defines a collection of procedures, or a
package, and interfaces these to the rest of the system
by adding entries to the table that tell the system how to
operate on rectangular numbers. This is accomplished by
calling the following procedure:

(define (install-rectangul ar-package)
;; internal procedures

(define
(define
(define

(define
(sqrt

(define
(atan

(define

(cons

(real-part z) (car z))
(imag-part z) (cdr z))
(rmake-fromreal -imag x y) (cons x y))

(magni tude z)
(+ (square (real-part z))

(square (inmag-part z)))))

(angle z)
(imag-part z) (real-part z)))

(make-from mag-ang r a)

(* r (cos a)) (* r (sin a))))

;; interface to the rest of the system

(define

(tag x) (attach-tag 'rectangul ar x))

(put 'real-part '(rectangular) real-part)

(put "imag-part '(rectangular) inmag-part)

(put 'magnitude ' (rectangul ar) nmagnitude)

(put "angle '(rectangular) angle)
(put 'make-fromreal -imag 'rectangul ar

(lanbda (x y) (tag (make-fromreal -imag x y))))
(put 'make-from nmag-ang 'rectangul ar
(lanbda (r a) (tag (make-fromnmag-ang r a))))

' done)

Notice that the internal procedures here are the same
procedures from section 2.4.1 that Ben wrote when he was
working in isolation. No changes are necessary in order to
interface them to the rest of the system. Moreover, since
these procedure definitions are internal to the installation
procedure, Ben needn't worry about name conflicts with
other procedures outside the rectangular package. To
interface these to the rest of the system, Ben installs his
real -part procedure under the operation name real - part
and the type (rectangul ar), and similarly for the other

selectors.”® The interface also defines the constructors
to be used by the external system.*”® These are identical

45 We use the list (rectangular) rather than the symbol rectangular to allow
for the possibility of operations with multiple arguments, not all of the same
type.

46 The type the constructors are installed under needn't be a list because
a constructor is always used to make an object of one particular type.

to Ben's internally defined constructors, except that they
attach the tag.

Alyssa's polar package is analogous:

(define (install-polar-package)
;5 internal procedures
(define (magnitude z) (car z))

(define (angle z) (cdr z))
(define (make-frommag-ang r a) (cons r a))

(define (real-part z)
(* (magnitude z) (cos (angle z))))

(define (img-part z)
(* (magnitude z) (sin (angle z))))

(define (make-fromreal -imag x y)
(cons (sqgrt (+ (square x) (square y)))
(atan y x)))

;; interface to the rest of the system
(define (tag x) (attach-tag 'polar x))
(put 'real-part '(polar) real-part)

(put 'imag-part '(polar) imag-part)

(put 'magnitude ' (polar) magnitude)

(put 'angle '(polar) angle)
(put 'make-fromreal -i mag ' pol ar

(lanbda (x y) (tag (make-fromreal -imag x y))))

(put 'make-from mag-ang ' pol ar
(lanbda (r a) (tag (make-fromnmag-ang r a))))

' done)

Even though Ben and Alyssa both still use their original
procedures defined with the same names as each other's
(e.g., real-part), these definitions are now internal to
different procedures (see section 1.1.8), so there is no
name conflict.

The complex-arithmetic selectors access the table by
means of a general "operation" procedure called appl y-
generic, which applies a generic operation to some
arguments. Appl y-generic looks in the table under the
name of the operation and the types of the arguments and

applies the resulting procedure if one is present:*’
(define (apply-generic op . args)
(let ((type-tags (map type-tag args)))
(let ((proc (get op type-tags)))

(if proc
(apply proc (map contents args))

47 Apply-generic uses the dotted-tail notation described in exercise 2.20,
because different generic operations may take different numbers of
arguments. In apply-generic, op has as its value the first argument to
apply-generic and args has as its value a list of the remaining arguments.

(error

"No method for these types -- APPLY- GENERI C'

(l'ist op type-tags))))))

Using appl y- generi ¢, we can define our generic selectors
as follows:

(define (real-part z) (apply-generic 'real-part z))
(define (imng-part z) (apply-generic 'img-part z))
(define (magnitude z) (apply-generic 'magnitude z))

(define (angle z) (apply-generic 'angle z))

Observe that these do not change at all if a new
representation is added to the system.

We can also extract from the table the constructors to be
used by the programs external to the packages in making
complex numbers from real and imaginary parts and from
magnitudes and angles. As in section 2.4.2, we construct
rectangular numbers whenever we have real and imaginary
parts, and polar numbers whenever we have magnitudes
and angles:

(define (nmake-fromreal -imag x y)
((get '"make-fromreal -inmag 'rectangular) x y))

(define (nmake-from mag-ang r a)
((get 'make-fromnag-ang 'polar) r a))

Exercise 2.73. Section 2.3.2 described a program that
performs symbolic differentiation:

(define (deriv exp var)
(cond ((nunber? exp) 0)
((variabl e? exp) (if (sane-variable? exp var)
((sunP exp)
(make-sum (deriv (addend exp) var)
(deriv (augend exp) var)))
((product? exp)
(make-sum
(make-product (rultiplier exp)
(deriv (multiplicand exp) var))
(make-product (deriv (multiplier exp) var)
(rmul tiplicand exp))))

<nore rules can be added here>

(el se (error "unknown expression type -- DERI\

We can regard this program as performing a dispatch
on the type of the expression to be differentiated. In
this situation the "type tag" of the datum is the algebraic
operator symbol (such as +) and the operation being
performed is deriv. We can transform this program

into data-directed style by rewriting the basic derivative
procedure as
(define (deriv exp var)

(cond ((nunber? exp) 0)
((variable? exp) (if (sane-variable? exp var)

(else ((get 'deriv (operator exp)) (operands exp)

var))))

(define (operator exp) (car exp))
(define (operands exp) (cdr exp))

a. Explain what was done above. Why can't we assimilate
the predicates nunber ? and same-vari abl e? into the data-
directed dispatch?

b. Write the procedures for derivatives of sums and
products, and the auxiliary code required to install them in
the table used by the program above.

c. Choose any additional differentiation rule that you like,
such as the one for exponents (exercise 2.56), and installl
it in this data-directed system.

d. In this simple algebraic manipulator the type of an
expression is the algebraic operator that binds it together.
Suppose, however, we indexed the procedures in the
opposite way, so that the dispatch line in deri v looked like

((get (operator exp) 'deriv) (operands exp) var)

What corresponding changes to the derivative system are
required?

Exercise 2.74. Insatiable Enterprises, Inc., is a highly
decentralized conglomerate company consisting of a large
number of independent divisions located all over the
world. The company's computer facilities have just been
interconnected by means of a clever network-interfacing
scheme that makes the entire network appear to any
user to be a single computer. Insatiable's president, in
her first attempt to exploit the ability of the network to
extract administrative information from division files, is
dismayed to discover that, although all the division files
have been implemented as data structures in Scheme,
the particular data structure used varies from division to
division. A meeting of division managers is hastily called
to search for a strategy to integrate the files that will
satisfy headquarters' needs while preserving the existing
autonomy of the divisions.

Show how such a strategy can be implemented with
data-directed programming. As an example, suppose that
each division's personnel records consist of a single file,
which contains a set of records keyed on employees'
names. The structure of the set varies from division to
division. Furthermore, each employee's record is itself a set
(structured differently from division to division) that contains
information keyed under identifiers such as address and
sal ary. In particular:

a. Implement for headquarters a get - r ecor d procedure that
retrieves a specified employee's record from a specified
personnel file. The procedure should be applicable to any
division's file. Explain how the individual divisions' files
should be structured. In particular, what type information
must be supplied?

b. Implement for headquarters a get-sal ary procedure
that returns the salary information from a given employee's
record from any division's personnel file. How should the
record be structured in order to make this operation work?

c. Implement for headquarters a find-enpl oyee-record
procedure. This should search all the divisions' files for the
record of a given employee and return the record. Assume
that this procedure takes as arguments an employee's
name and a list of all the divisions' files.

d. When Insatiable takes over a new company, what
changes must be made in order to incorporate the new
personnel information into the central system?

Message passing

The key idea of data-directed programming is to handle
generic operations in programs by dealing explicitly with
operation-and-type tables, such as the table in figure 2.22.
The style of programming we used in section 2.4.2
organized the required dispatching on type by having each
operation take care of its own dispatching. In effect, this
decomposes the operation-and-type table into rows, with

each generic operation procedure representing a row of the
table.

An alternative implementation strategy is to decompose
the table into columns and, instead of using "intelligent
operations" that dispatch on data types, to work with
"intelligent data objects" that dispatch on operation names.
We can do this by arranging things so that a data
object, such as a rectangular number, is represented as a
procedure that takes as input the required operation hame
and performs the operation indicated. In such a discipline,
nmake-fromreal -i mag could be written as

(define (make-fromreal -imag x y)

(define (dispatch op)
(cond ((eq? op 'real-part) x)

((eqg? op "imag-part) vy)

((eqg? op 'magnitude)

(sqgrt (+ (square x) (square y))))

((eqg? op 'angle) (atan y x))

(el se

(error "Unknown op -- MAKE- FROM REAL- | MAG'

di spat ch)

The corresponding apply-generic procedure, which
applies a generic operation to an argument, now simply

feeds the operation's name to the data object and lets the
object do the work:*®
(define (apply-generic op arg) (arg op))

Note that the value returned by nake-fromreal -i mag iS a
procedure -- the internal di spat ch procedure. This is the
procedure that is invoked when appl y- generi ¢ requests an
operation to be performed.

This style of programming is called message passing. The
name comes from the image that a data object is an
entity that receives the requested operation name as a
"message."” We have already seen an example of message
passing in section 2.1.3, where we saw how cons, car,
and cdr could be defined with no data objects but only
procedures. Here we see that message passing is not a
mathematical trick but a useful technique for organizing
systems with generic operations. In the remainder of this
chapter we will continue to use data-directed programming,
rather than message passing, to discuss generic arithmetic
operations. In chapter 3 we will return to message passing,
and we will see that it can be a powerful tool for structuring
simulation programs.

Exercise 2.75. Implement the constructor nake- f r om nag-
ang In message-passing style. This procedure should be

48 One limitation of this organization is it permits only generic procedures
of one argument.

analogous to the nake-fromreal -i mag procedure given
above.

Exercise 2.76. As a large system with generic operations
evolves, new types of data objects or new operations may
be needed. For each of the three strategies -- generic
operations with explicit dispatch, data-directed style, and
message-passing-style -- describe the changes that must
be made to a system in order to add new types or new
operations. Which organization would be most appropriate
for a system in which new types must often be added?
Which would be most appropriate for a system in which new
operations must often be added?

2.5 Systems with Generic
Operations

In the previous section, we saw how to design systems in
which data objects can be represented in more than one
way. The key idea is to link the code that specifies the
data operations to the several representations by means of
generic interface procedures. Now we will see how to use
this same idea not only to define operations that are generic
over different representations but also to define operations
that are generic over different kinds of arguments. We
have already seen several different packages of arithmetic
operations: the primitive arithmetic (+, -, *, /) built into our

language, the rational-number arithmetic (add-r at , sub- r at ,
mul -rat, di v-rat) of section 2.1.1, and the complex-number
arithmetic that we implemented in section 2.4.3. We will
now use data-directed techniques to construct a package
of arithmetic operations that incorporates all the arithmetic
packages we have already constructed.

Figure 2.23 shows the structure of the system we
shall build. Notice the abstraction barriers. From the
perspective of someone using "numbers," there is a single
procedure add that operates on whatever numbers are
supplied. Add is part of a generic interface that allows
the separate ordinary-arithmetic, rational-arithmetic, and
complex-arithmetic packages to be accessed uniformly
by programs that use numbers. Any individual arithmetic
package (such as the complex package) may itself be
accessed through generic procedures (such as add-
conpl ex) that combine packages designed for different
representations (such as rectangular and polar). Moreover,
the structure of the system is additive, so that one can
design the individual arithmetic packages separately and
combine them to produce a generic arithmetic system.

Figure 2.23: Generic arithmetic system.

Prograrms that use numbers

I add sub mul di'\rl

Generic anthmetic package

add—rat sub—rat add—conplex sub—complex
: :

~ | mul—rat div-rat mul—conplex div—ocomnplex
Rational Complex adthmetic Ordinacy
arithmetic arithmetc
Rectangulac Polac

List staucture and pomitive machine arthmetic

2.5.1 Generic Arithmetic Operations

The task of designing generic arithmetic operations is
analogous to that of designing the generic complex-
number operations. We would like, for instance, to have
a generic addition procedure add that acts like ordinary
primitive addition + on ordinary numbers, like add-rat
on rational numbers, and like add-conpl ex on complex
numbers. We can implement add, and the other generic
arithmetic operations, by following the same strategy we
used in section 2.4.3 to implement the generic selectors for
complex numbers. We will attach a type tag to each kind
of number and cause the generic procedure to dispatch to

an appropriate package according to the data type of its
arguments.

The generic arithmetic procedures are defined as follows:
(define (add x y) (apply-generic 'add x y))

(define (sub x y) (apply-generic 'sub x y))
(define (mul x y) (apply-generic 'mul x y))

(define (div x y) (apply-generic 'div x y))

We begin by installing a package for handling ordinary
numbers, that is, the primitive numbers of our language. We
will tag these with the symbol schene- nunber . The arithmetic
operations in this package are the primitive arithmetic
procedures (so there is no need to define extra procedures
to handle the untagged numbers). Since these operations
each take two arguments, they are installed in the table
keyed by the list (schenme- nunber schene- nunber) :

(define (install-schene-nunber-package)

(define (tag x)
(attach-tag ' schene-nunber x))

(put '"add ' (schene-nunber schene- nunber)
(lambda (x y) (tag (+ x y))))
(put 'sub ' (schene-nunber schene- nunber)

(lambda (x y) (tag (- x y))))

(put "mul ' (schene-nunber schene- nunber)

(lambda (x y) (tag (* x y))))

(put "div ' (schene-nunber schene-nunber)

(lambda (x y) (tag (/ x¥))))

(put 'make 'schene-nunber
(lanbda (x) (tag x)))

' done)

Users of the Scheme-number package will create (tagged)
ordinary numbers by means of the procedure:
(defi ne (make-schene-nunber n)

((get 'make 'scheme-nunber) n))
Now that the framework of the generic arithmetic system is
in place, we can readily include new kinds of numbers. Here
is a package that performs rational arithmetic. Notice that,
as a benefit of additivity, we can use without modification
the rational-number code from section 2.1.1 as the internal
procedures in the package:
(define (install-rational-package)

internal procedures
(define (numer x) (car Xx))
(define (denomx) (cdr x))

(define (make-rat n d)
(et ((g (gcd n d)))

(cons (/ ng) (/ dg))))

(define (add-rat x y)
(meke-rat (+ (* (numer x) (denomy))

(* (numer y) (denomx)))
(* (denom x) (denomy))))

(define (sub-rat x y)
(make-rat (- (* (numer x) (denomy))

(* (numer y) (denomx)))
(* (denom x) (denomy))))

(define (mul-rat x y)
(make-rat (* (nuner x) (numer y))

(* (denom x) (denomy))))

(define (div-rat x y)
(make-rat (* (nuner x) (denomy))

(* (denom x) (nuner y))))
;; interface to rest of the system
(define (tag x) (attach-tag 'rational x))

(put "add '(rational rational)
(lanbda (x y) (tag (add-rat x y))))

(put "sub '(rational rational)
(lanbda (x y) (tag (sub-rat x y))))

(put "mul ‘' (rational rational)
(lanbda (x y) (tag (mul-rat x y))))

(put "div '(rational rational)

(lanbda (x y) (tag (div-rat x y))))

(put 'make 'rational
(lanbda (n d) (tag (make-rat n d))))

' done)
(define (nmake-rational n d)
((get '"make 'rational) n d))

We can install a similar package to handle complex
numbers, using the tag conpl ex. In creating the package,
we extract from the table the operations nake-fromreal -
imng and rnmke-from mag-ang that were defined by the
rectangular and polar packages. Additivity permits us to
use, as the internal operations, the same add- conpl ex, sub-
conpl ex, mul -conpl ex, and div-conpl ex procedures from
section 2.4.1.

(define (install-conpl ex-package)
;; inported procedures fromrectangul ar and pol ar pe

(define (make-fromreal -imag x y)
((get 'make-fromreal -imag 'rectangular) x vy))

(define (make-from mag-ang r a)
((get 'make-from mag-ang 'polar) r a))

;5 internal procedures
(define (add-conplex zl z2)
(make-fromreal -imag (+ (real-part zl) (real-part

(+ (inmag-part z1) (inmag-part z2))))

(define (sub-conplex zl1l z2)

(meke-fromreal -imag (- (real-part z1) (real-part
(- (imag-part z1) (i mg-part z2))))

(define (mul-conplex z1 z2)
(make-from mag-ang (* (magnitude z1) (magnitude z2))

(+ (angle z1) (angle z2))))

(define (div-conplex z1 z2)
(make-from mag-ang (/ (magnitude z1) (magnitude z2))

(- (angle z1) (angle z2))))
;; interface to rest of the system
(define (tag z) (attach-tag 'conplex z))

(put "add ' (conpl ex conpl ex)
(lanbda (z1 z2) (tag (add-conplex z1 z2))))

(put "sub ' (conpl ex conpl ex)
(lanbda (z1 z2) (tag (sub-conplex z1 z2))))

(put "mul ' (conpl ex conpl ex)
(lanbda (z1 z2) (tag (mul-conplex z1 z2))))

(put "div ' (conplex conpl ex)
(lanbda (z1 z2) (tag (div-conplex z1 z2))))

(put 'make-fromreal -i mag ' conpl ex
(lanbda (x y) (tag (make-fromreal -imag x y))))

(put ' make-from nag-ang ' conpl ex
(lanbda (r a) (tag (make-fromnmag-ang r a))))

' done)

Programs outside the complex-number package can
construct complex numbers either from real and imaginary
parts or from magnitudes and angles. Notice how the
underlying procedures, originally defined in the rectangular
and polar packages, are exported to the complex package,
and exported from there to the outside world.

(define (make-conplex-fromreal -imag x y)
((get 'make-fromreal -imag ' conplex) x y))
(define (make-conpl ex-frommag-ang r a)

((get 'make-from mag-ang 'conplex) r a))

What we have here is a two-level tag system. A typical
complex number, such as 3 + 4i in rectangular form, would
be represented as shown in figure 2.24. The outer tag
(conpl ex) is used to direct the number to the complex
package. Once within the complex package, the next
tag (rectangular) is used to direct the number to the
rectangular package. In a large and complicated system
there might be many levels, each interfaced with the next
by means of generic operations. As a data object is passed
"downward," the outer tag that is used to direct it to the
appropriate package is stripped off (by applying cont ent s)
and the next level of tag (if any) becomes visible to be used
for further dispatching.

Figure 2.24: Representation of 3 + 4i in rectangular form.

—== B | B .| g1 & T

¢

comnplex cectangularc = 4

In the above packages, we used add- r at , add- conpl ex, and
the other arithmetic procedures exactly as originally written.
Once these definitions are internal to different installation
procedures, however, they no longer need names that are
distinct from each other: we could simply name them add,
sub, nul , and di v in both packages.

Exercise 2.77. Louis Reasoner tries to evaluate the
expression (mgni tude z) where z is the object shown in
figure 2.24. To his surprise, instead of the answer 5 he gets
an error message from appl y- generi c, saying there is no
method for the operation nagni t ude on the types (conpl ex) .
He shows this interaction to Alyssa P. Hacker, who says
"The problem is that the complex-number selectors were
never defined for conpl ex numbers, just for polar and
rect angul ar numbers. All you have to do to make this work
is add the following to the compl ex package:"

(put 'real-part '(conplex) real-part)

(put 'inmag-part ' (conplex) inmag-part)

(put 'magni tude ' (conpl ex) nagnitude)

(put 'angle '(conplex) angle)

Describe in detail why this works. As an example,
trace through all the procedures called in evaluating the
expression (mgni tude z) where z is the object shown in
figure 2.24. In particular, how many times is appl y- generi c
invoked? What procedure is dispatched to in each case?

Exercise 2.78. The internal procedures in the schene-
nunber package are essentially nothing more than calls to
the primitive procedures +, -, etc. It was not possible to
use the primitives of the language directly because our
type-tag system requires that each data object have a type
attached to it. In fact, however, all Lisp implementations
do have a type system, which they use internally. Primitive
predicates such as synbol ? and nunber ? determine whether
data objects have particular types. Modify the definitions
of type-tag, contents, and attach-tag from section 2.4.2
so that our generic system takes advantage of Scheme's
internal type system. That is to say, the system should
work as before except that ordinary numbers should be
represented simply as Scheme numbers rather than as
pairs whose car is the symbol schene- nunber .

Exercise 2.79. Define a generic equality predicate equ?
that tests the equality of two numbers, and install it in
the generic arithmetic package. This operation should
work for ordinary numbers, rational numbers, and complex
numbers.

Exercise 2.80. Define a generic predicate =zer 0? that tests
if its argument is zero, and install it in the generic arithmetic

package. This operation should work for ordinary numbers,
rational numbers, and complex numbers.

2.5.2 Combining Data of Different Types

We have seen how to define a unified arithmetic system
that encompasses ordinary numbers, complex numbers,
rational numbers, and any other type of number we might
decide to invent, but we have ignored an important issue.
The operations we have defined so far treat the different
data types as being completely independent. Thus, there
are separate packages for adding, say, two ordinary
numbers, or two complex numbers. What we have not
yet considered is the fact that it is meaningful to define
operations that cross the type boundaries, such as the
addition of a complex number to an ordinary number. We
have gone to great pains to introduce barriers between
parts of our programs so that they can be developed and
understood separately. We would like to introduce the
cross-type operations in some carefully controlled way, so
that we can support them without seriously violating our
module boundaries.

One way to handle cross-type operations is to design a
different procedure for each possible combination of types
for which the operation is valid. For example, we could
extend the complex-number package so that it provides
a procedure for adding complex numbers to ordinary

numbers and installs this in the table using the tag (conpl ex
scheme- nunber) :49

;; to be included in the conpl ex package
(define (add-conpl ex-to-schemenum z x)
(make-fromreal -imag (+ (real-part z) x)

(i mag-part z)))

(put 'add ' (conpl ex schene-nunber)
(I anbda (z x) (tag (add-conpl ex-to-schemenumz x))))

This technique works, but it is cumbersome. With such a
system, the cost of introducing a new type is not just the
construction of the package of procedures for that type but
also the construction and installation of the procedures that
implement the cross-type operations. This can easily be
much more code than is needed to define the operations
on the type itself. The method also undermines our ability
to combine separate packages additively, or least to limit
the extent to which the implementors of the individual
packages need to take account of other packages. For
instance, in the example above, it seems reasonable
that handling mixed operations on complex numbers and
ordinary numbers should be the responsibility of the
complex-number package. Combining rational numbers
and complex numbers, however, might be done by the

49 We also have to supply an almost identical procedure to handle the
types (scheme-number complex).

complex package, by the rational package, or by some third
package that uses operations extracted from these two
packages. Formulating coherent policies on the division of
responsibility among packages can be an overwhelming
task in designing systems with many packages and many
cross-type operations.

Coercion

In the general situation of completely unrelated operations
acting on completely unrelated types, implementing explicit
cross-type operations, cumbersome though it may be, is
the best that one can hope for. Fortunately, we can usually
do better by taking advantage of additional structure that
may be latent in our type system. Often the different data
types are not completely independent, and there may be
ways by which objects of one type may be viewed as
being of another type. This process is called coercion.
For example, if we are asked to arithmetically combine
an ordinary number with a complex number, we can
view the ordinary number as a complex number whose
imaginary part is zero. This transforms the problem to that
of combining two complex numbers, which can be handled
in the ordinary way by the complex-arithmetic package.

In general, we can implement this idea by designing
coercion procedures that transform an object of one type
into an equivalent object of another type. Here is a typical
coercion procedure, which transforms a given ordinary

number to a complex number with that real part and zero
imaginary part:

(define (scheme-nunber->conpl ex n)

(make-conpl ex-fromreal -imag (contents n) 0))

We install these coercion procedures in a special coercion
table, indexed under the names of the two types:

(put - coercion 'scheme-nunber 'conpl ex scheme- nunber - >c

(We assume that there are put - coer ci on and get - coer ci on
procedures available for manipulating this table.) Generally
some of the slots in the table will be empty, because it is
not generally possible to coerce an arbitrary data object
of each type into all other types. For example, there is no
way to coerce an arbitrary complex number to an ordinary
number, so there will be no general conpl ex->scheme-
nunber procedure included in the table.

Once the coercion table has been set up, we can handle
coercion in a uniform manner by modifying the appl y-
generi c procedure of section 2.4.3. When asked to apply an
operation, we first check whether the operation is defined
for the arguments' types, just as before. If so, we dispatch
to the procedure found in the operation-and-type table.
Otherwise, we try coercion. For simplicity, we consider

only the case where there are two arguments.”® We check
the coercion table to see if objects of the first type can

50 See exercise 2.82 for generalizations.

be coerced to the second type. If so, we coerce the first
argument and try the operation again. If objects of the first
type cannot in general be coerced to the second type, we
try the coercion the other way around to see if there is a
way to coerce the second argument to the type of the first
argument. Finally, if there is no known way to coerce either
type to the other type, we give up. Here is the procedure:

(define (apply-generic op . args)
(let ((type-tags (map type-tag args)))
(let ((proc (get op type-tags)))

(if proc
(apply proc (map contents args))

(if (= (length args) 2)
(let ((typel (car type-tags))
(type2 (cadr type-tags))
(al (car args))
(a2 (cadr args)))
(let ((t1->t2 (get-coercion typel type2))
(t2->t1 (get-coercion type2 typel)))
(cond (t1->t2

(appl y-generic op (t1->t2 al) a2))

(t2->t1
(appl y-generic op al (t2->t1 a2)))
(el se

(error "No nethod for these types”

(l'ist op type-tags))))))

(error "No nethod for these types"

(l'ist op type-tags)))))))
This coercion scheme has many advantages over the
method of defining explicit cross-type operations, as
outlined above. Although we still need to write coercion
procedures to relate the types (possibly n’ procedures for a
system with n types), we need to write only one procedure
for each pair of types rather than a different procedure for
each collection of types and each generic operation.” What
we are counting on here is the fact that the appropriate

51 If we are clever, we can usually get by with fewer than n2 coercion
procedures. For instance, if we know how to convert from type 1 to type
2 and from type 2 to type 3, then we can use this knowledge to convert
from type 1 to type 3. This can greatly decrease the number of coercion
procedures we need to supply explicitly when we add a new type to the
system. If we are willing to build the required amount of sophistication
into our system, we can have it search the "graph" of relations among
types and automatically generate those coercion procedures that can be
inferred from the ones that are supplied explicitly.

transformation between types depends only on the types
themselves, not on the operation to be applied.

On the other hand, there may be applications for which our
coercion scheme is not general enough. Even when neither
of the objects to be combined can be converted to the type
of the other it may still be possible to perform the operation
by converting both objects to a third type. In order to deal
with such complexity and still preserve modularity in our
programs, it is usually necessary to build systems that take
advantage of still further structure in the relations among
types, as we discuss next.

Hierarchies of types

The coercion scheme presented above relied on the
existence of natural relations between pairs of types. Often
there is more "global" structure in how the different types
relate to each other. For instance, suppose we are building
a generic arithmetic system to handle integers, rational
numbers, real numbers, and complex numbers. In such a
system, it is quite natural to regard an integer as a special
kind of rational number, which is in turn a special kind of
real number, which is in turn a special kind of complex
number. What we actually have is a so-called hierarchy
of types, in which, for example, integers are a subtype of
rational numbers (i.e., any operation that can be applied
to a rational number can automatically be applied to an
integer). Conversely, we say that rational humbers form
a supertype of integers. The particular hierarchy we have

here is of a very simple kind, in which each type has at most
one supertype and at most one subtype. Such a structure,
called a tower, is illustrated in figure 2.25.

Figure 2.25: A tower of types.

complex

!

eal

cational

integer

If we have a tower structure, then we can greatly simplify
the problem of adding a new type to the hierarchy, for we
need only specify how the new type is embedded in the
next supertype above it and how it is the supertype of the
type below it. For example, if we want to add an integer to
a complex number, we need not explicitly define a special
coercion procedure i nt eger - >conpl ex. Instead, we define
how an integer can be transformed into a rational number,
how a rational number is transformed into a real number,

and how a real number is transformed into a complex
number. We then allow the system to transform the integer
into a complex number through these steps and then add
the two complex numbers.

We can redesign our apply-generic procedure in the
following way: For each type, we need to supply a rai se
procedure, which "raises" objects of that type one level in
the tower. Then when the system is required to operate
on objects of different types it can successively raise the
lower types until all the objects are at the same level in
the tower. (Exercises 2.83 and 2.84 concern the details of
implementing such a strategy.)

Another advantage of a tower is that we can easily
implement the notion that every type "inherits" all
operations defined on a supertype. For instance, if we do
not supply a special procedure for finding the real part of an
integer, we should nevertheless expect that real - part will
be defined for integers by virtue of the fact that integers are
a subtype of complex numbers. In a tower, we can arrange
for this to happen in a uniform way by modifying appl y-
generic. If the required operation is not directly defined
for the type of the object given, we raise the object to
its supertype and try again. We thus crawl up the tower,
transforming our argument as we go, until we either find a
level at which the desired operation can be performed or
hit the top (in which case we give up).

Yet another advantage of a tower over a more general
hierarchy is that it gives us a simple way to "lower" a data
object to the simplest representation. For example, if we
add 2 + 3i to 4 - 3i, it would be nice to obtain the answer
as the integer 6 rather than as the complex number 6 +
Oi. Exercise 2.85 discusses a way to implement such a
lowering operation. (The trick is that we need a general way
to distinguish those objects that can be lowered, such as 6
+ 0i, from those that cannot, such as 6 + 2i.)

Figure 2.26: Relations among types of geometric figures.

polygon
quadrilateral
tl:apcznid kite

toangle

/ \ parallclogram
isosceles right
tiangle tiangle

cectangle thombus

rcquilateral isosceles \ /

triangle tht square
triangle

Inadequacies of hierarchies

If the data types in our system can be naturally arranged
in a tower, this greatly simplifies the problems of dealing
with generic operations on different types, as we have
seen. Unfortunately, this is usually not the case. Figure 2.26

illustrates a more complex arrangement of mixed types, this
one showing relations among different types of geometric
figures. We see that, in general, a type may have more than
one subtype. Triangles and quadrilaterals, for instance, are
both subtypes of polygons. In addition, a type may have
more than one supertype. For example, an isosceles right
triangle may be regarded either as an isosceles triangle
or as a right triangle. This multiple-supertypes issue is
particularly thorny, since it means that there is no unique
way to "raise" a type in the hierarchy. Finding the "correct"
supertype in which to apply an operation to an object
may involve considerable searching through the entire type
network on the part of a procedure such as appl y- generi c.
Since there generally are multiple subtypes for a type,
there is a similar problem in coercing a value "down" the
type hierarchy. Dealing with large numbers of interrelated
types while still preserving modularity in the design of large
systems is very difficult, and is an area of much current

research.”

52 This statement, which also appears in the first edition of this book, is
just as true now as it was when we wrote it twelve years ago. Developing
a useful, general framework for expressing the relations among different
types of entities (what philosophers call "ontology") seems intractably
difficult. The main difference between the confusion that existed ten
years ago and the confusion that exists now is that now a variety of
inadequate ontological theories have been embodied in a plethora of
correspondingly inadequate programming languages. For example, much
of the complexity of object-oriented programming languages -- and the
subtle and confusing differences among contemporary object-oriented

Exercise 2.81. Louis Reasoner has noticed that appl y-
generic may try to coerce the arguments to each other's
type even if they already have the same type. Therefore,
he reasons, we need to put procedures in the coercion
table to "coerce" arguments of each type to their own type.
For example, in addition to the scheme- nunber - >conpl ex
coercion shown above, he would do:

(define (scheme-nunber->schene-nunber n) n)
(define (conpl ex->conpl ex z) z)

(put - coerci on ' scheme-nunber 'schene- nunber
scheme- nunber - >schemne- nunber)

(put - coercion 'conpl ex 'conpl ex conpl ex->conpl ex)

a. With Louis's coercion procedures installed, what
happens if apply-generic is called with two arguments
of type scheme- nunber or two arguments of type conpl ex
for an operation that is not found in the table for those
types? For example, assume that we've defined a generic
exponentiation operation:

languages -- centers on the treatment of generic operations on interrelated
types. Our own discussion of computational objects in chapter 3 avoids
these issues entirely. Readers familiar with object-oriented programming
will notice that we have much to say in chapter 3 about local state, but we
do not even mention “classes" or "inheritance." In fact, we suspect that
these problems cannot be adequately addressed in terms of computer-
language design alone, without also drawing on work in knowledge
representation and automated reasoning.

(define (exp x y) (apply-generic '"exp x y))

and have put a procedure for exponentiation in the
Scheme-number package but not in any other package:

;; follow ng added to Scheme-nunber package

(put 'exp ' (scheme-nunber schene-nunber)
(lambda (x y) (tag (expt x y))))
using primtive expt
What happens if we call exp with two complex numbers as
arguments?

b. Is Louis correct that something had to be done about
coercion with arguments of the same type, or does appl y-
generi ¢ work correctly as is?

c. Modify appl y- generi ¢ So that it doesn't try coercion if the
two arguments have the same type.

Exercise 2.82. Show how to generalize appl y- generi ¢ to
handle coercion in the general case of multiple arguments.
One strategy is to attempt to coerce all the arguments to
the type of the first argument, then to the type of the second
argument, and so on. Give an example of a situation
where this strategy (and likewise the two-argument version
given above) is not sufficiently general. (Hint: Consider the
case where there are some suitable mixed-type operations
present in the table that will not be tried.)

Exercise 2.83. Suppose you are designing a generic
arithmetic system for dealing with the tower of types shown
in figure 2.25: integer, rational, real, complex. For each type

(except complex), design a procedure that raises objects
of that type one level in the tower. Show how to install a
generic r ai se operation that will work for each type (except
complex).

Exercise 2.84. Using the rai se operation of exercise 2.83,
modify the appl y-generic procedure so that it coerces
its arguments to have the same type by the method of
successive raising, as discussed in this section. You will
need to devise a way to test which of two types is higher in
the tower. Do this in a manner that is "compatible” with the
rest of the system and will not lead to problems in adding
new levels to the tower.

Exercise 2.85. This section mentioned a method for
"simplifying" a data object by lowering it in the tower of
types as far as possible. Design a procedure drop that
accomplishes this for the tower described in exercise 2.83.
The key is to decide, in some general way, whether an
object can be lowered. For example, the complex number
1.5 + 0i can be lowered as far as real, the complex
number 1 + Oi can be lowered as far as integer, and
the complex number 2 + 3i cannot be lowered at all.
Here is a plan for determining whether an object can be
lowered: Begin by defining a generic operation proj ect
that "pushes" an object down in the tower. For example,
projecting a complex number would involve throwing away
the imaginary part. Then a number can be dropped if,
when we project it and raise the result back to the
type we started with, we end up with something equal

to what we started with. Show how to implement this
idea in detail, by writing a drop procedure that drops an
object as far as possible. You will need to design the

various projection operations™ and install project as a
generic operation in the system. You will also need to make
use of a generic equality predicate, such as described in
exercise 2.79. Finally, use drop to rewrite appl y-generic
from exercise 2.84 so that it "simplifies" its answers.

Exercise 2.86. Suppose we want to handle complex
numbers whose real parts, imaginary parts, magnitudes,
and angles can be either ordinary numbers, rational
numbers, or other numbers we might wish to add to
the system. Describe and implement the changes to the
system needed to accommodate this. You will have to
define operations such as si ne and cosi ne that are generic
over ordinary numbers and rational numbers.

2.5.3 Example: Symbolic Algebra

The manipulation of symbolic algebraic expressions is
a complex process that illustrates many of the hardest
problems that occur in the design of large-scale systems.
An algebraic expression, in general, can be viewed as
a hierarchical structure, a tree of operators applied to
operands. We can construct algebraic expressions by
starting with a set of primitive objects, such as constants

53 A real number can be projected to an integer using the round primitive,
which returns the closest integer to its argument.

and variables, and combining these by means of algebraic
operators, such as addition and multiplication. As in other
languages, we form abstractions that enable us to refer
to compound objects in simple terms. Typical abstractions
in symbolic algebra are ideas such as linear combination,
polynomial, rational function, or trigonometric function. We
can regard these as compound "types," which are often
useful for directing the processing of expressions. For
example, we could describe the expression

2 2 3 2
P an(y 4+ 114 £ oos 2y 4+ cos(y” — 2y
as a polynomial in x with coefficients that are trigonometric

functions of polynomials in y whose coefficients are
integers.

We will not attempt to develop a complete algebraic-
manipulation system here. Such systems are exceedingly
complex programs, embodying deep algebraic knowledge
and elegant algorithms. What we will do is look at a simple
but important part of algebraic manipulation: the arithmetic
of polynomials. We will illustrate the kinds of decisions
the designer of such a system faces, and how to apply
the ideas of abstract data and generic operations to help
organize this effort.

Arithmetic on polynomials

Our first task in designing a system for performing
arithmetic on polynomials is to decide just what a
polynomial is. Polynomials are normally defined relative to

certain variables (the indeterminates of the polynomial). For
simplicity, we will restrict ourselves to polynomials having

just one indeterminate (univariate polynomials).”* We will
define a polynomial to be a sum of terms, each of which
is either a coefficient, a power of the indeterminate, or a
product of a coefficient and a power of the indeterminate.
A coefficient is defined as an algebraic expression that is
not dependent upon the indeterminate of the polynomial.
For example,

By L 3r 4

is a simple polynomial in x, and

3
(o + U+ (e 4+ 1
is a polynomial in x whose coefficients are polynomialsinyy.

Already we are skirting some thorny issues. Is the first

of these polynomials the same as the polynomial 5y° +
3y + 7, or not? A reasonable answer might be "yes, if
we are considering a polynomial purely as a mathematical
function, but no, if we are considering a polynomial to be
a syntactic form." The second polynomial is algebraically
equivalent to a polynomial in y whose coefficients are
polynomials in x. Should our system recognize this, or

54 On the other hand, we will allow polynomials whose coefficients are
themselves polynomials in other variables. This will give us essentially
the same representational power as a full multivariate system, although it
does lead to coercion problems, as discussed below.

not? Furthermore, there are other ways to represent a
polynomial -- for example, as a product of factors, or (for a
univariate polynomial) as the set of roots, or as a listing of

the values of the polynomial at a specified set of points.*
We can finesse these questions by deciding that in our
algebraic-manipulation system a "polynomial" will be a
particular syntactic form, not its underlying mathematical
meaning.

Now we must consider how to go about doing arithmetic
on polynomials. In this simple system, we will consider
only addition and multiplication. Moreover, we will insist
that two polynomials to be combined must have the same
indeterminate.

We will approach the design of our system by following
the familiar discipline of data abstraction. We will represent
polynomials using a data structure called a poly, which
consists of a variable and a collection of terms. We assume
that we have selectors variabl e and term | i st that extract
those parts from a poly and a constructor make- pol y that
assembles a poly from a given variable and a term list.

55 For univariate polynomials, giving the value of a polynomial at a
given set of points can be a particularly good representation. This makes
polynomial arithmetic extremely simple. To obtain, for example, the sum
of two polynomials represented in this way, we need only add the values
of the polynomials at corresponding points. To transform back to a more
familiar representation, we can use the Lagrange interpolation formula,
which shows how to recover the coefficients of a polynomial of degree n
given the values of the polynomial at n + 1 points.

A variable will be just a symbol, so we can use the sane-
var i abl e? procedure of section 2.3.2 to compare variables.
The following procedures define addition and multiplication
of polys:

(define (add-poly pl p2)
(if (same-variable? (variable pl) (variable p2))

(make-poly (variable pl)
(add-ternms (termlist pl)
(termlist p2)))
(error "Polys not in sane var -- ADD POLY"
(l'ist pl p2))))

(define (mul-poly pl p2)
(if (same-variable? (variable pl) (variable p2))

(make-poly (variable pl)
(rmul -terms (termlist pl)
(termlist p2)))
(error "Polys not in sane var -- MJL-POLY"

(list pl p2))))

To incorporate polynomials into our generic arithmetic
system, we need to supply them with type tags. We'll use
the tag pol ynoni al , and install appropriate operations on
tagged polynomials in the operation table. We'll embed alll

our code in an installation procedure for the polynomial
package, similar to the ones in section 2.5.1:
(define (install-polynoni al - package)

;; internal procedures

;; representation of poly
(define (make-poly variable termlist)

(cons variable termlist))
(define (variable p) (car p))
(define (termlist p) (cdr p))

<procedures same-vari abl e? and
vari abl e? from section 2.3.2>
; representation of terms and termlists

<procedures adjoin-term...
coef f

from text below> ;; continued on next page (define (add-
poly pl p2) ...) <procedures used by add- pol y>
(define (mul-poly p1 p2) ...) <procedures used by mul -

pol y> ;; interface to rest of the system
(define (tag p) (attach-tag 'polynomial p))
(put ‘add ‘(polynomial polynomial)

(lambda (p1 p2) (tag (ad

poly pl p2)))) (put 'mul ‘(polynomial polynomial)

(lambda (pl p2) (tag (mul-poly pl p2)))

(put 'make 'polynomial (lambda (var terms) (tag (make-
poly var terms)))) 'done)

Polynomial addition is performed termwise. Terms of the
same order (i.e., with the same power of the indeterminate)
must be combined. This is done by forming a new term

of the same order whose coefficient is the sum of the
coefficients of the addends. Terms in one addend for which
there are no terms of the same order in the other addend
are simply accumulated into the sum polynomial being
constructed.

In order to manipulate term lists, we will assume that
we have a constructor t he- enpty-terniist that returns an
empty term list and a constructor adj oi n-t er mthat adjoins
a new term to a term list. We will also assume that we have
a predicate enpty-terniist? that tells if a given term list
is empty, a selector first-termthat extracts the highest-
order term from a term list, and a selector rest-terns
that returns all but the highest-order term. To manipulate
terms, we will suppose that we have a constructor make-
t er mthat constructs a term with given order and coefficient,
and selectors or der and coef f that return, respectively, the
order and the coefficient of the term. These operations
allow us to consider both terms and term lists as data
abstractions, whose concrete representations we can
worry about separately.

Here is the procedure that constructs the term list for the
sum of two polynomials:®

56 This operation is very much like the ordered union-set operation we
developed in exercise 2.62. In fact, if we think of the terms of the
polynomial as a set ordered according to the power of the indeterminate,
then the program that produces the term list for a sum is almost identical
to union-set.

(define (add-terns L1 L2)
(cond ((enpty-termist? L1) L2)
((enpty-termist? L2) L1)

(el se
(let ((t1 (first-termL1l)) (t2 (first-termL2)))

(cond ((> (order tl1) (order t2))
(adjoin-term
tl (add-terms (rest-terms L1) L2)))
((< (order tl1) (order t2))
(adjoin-term
t2 (add-terms L1 (rest-terms L2))))
(el se
(adjoin-term
(make-term (order t1)
(add (coeff t1) (coeff t2)))
(add-terms (rest-terms L1)

(rest-terms L2)))))))))

The most important point to note here is that we used
the generic addition procedure add to add together the
coefficients of the terms being combined. This has powerful
consequences, as we will see below.

In order to multiply two term lists, we multiply each term
of the first list by all the terms of the other list, repeatedly
using mul -t erm by- al | - t er ms, Which multiplies a given term
by all terms in a given term list. The resulting term lists (one
for each term of the first list) are accumulated into a sum.
Multiplying two terms forms a term whose order is the sum
of the orders of the factors and whose coefficient is the
product of the coefficients of the factors:
(define (mul-ternms L1 L2)
(if (empty-termist? L1)
(the-empty-termist)
(add-terms (mul-termby-all-terns (first-term L]

(rmul -terms (rest-terms L1) L2))))

(define (nmul-termby-all-terns t1 L)
(if (empty-termist? L)
(the-empty-termist)
(let ((t2 (first-termlL)))

(adjoin-term
(make-term (+ (order t1) (order t2))

(rmul (coeff tl1l) (coeff t2)))

(rmul -termby-all-terms t1 (rest-terms L))))))

This is really all there is to polynomial addition and
multiplication. Notice that, since we operate on terms
using the generic procedures add and nmul , our polynomial
package is automatically able to handle any type of
coefficient that is known about by the generic arithmetic

package. If we include a coercion mechanism such as
one of those discussed in section 2.5.2, then we also are
automatically able to handle operations on polynomials of
different coefficient types, such as

] . - 1 E] .
[31" + [E-I—Ea.:lr + r] Cr -I—Er' + [54—31}

Because we installed the polynomial addition and
multiplication procedures add-poly and nul -poly in the
generic arithmetic system as the add and mul operations for
type pol ynoni al , our system is also automatically able to
handle polynomial operations such as

g+ 127+ (P + e+ = D] [y =D+ +7)
The reason is that when the system tries to combine
coefficients, it will dispatch through add and nul . Since the
coefficients are themselves polynomials (in y), these will
be combined using add- poly and nul -poly. The result is
a kind of "data-directed recursion” in which, for example,
a call to nul - pol y will result in recursive calls to nul - pol y
in order to multiply the coefficients. If the coefficients of
the coefficients were themselves polynomials (as might
be used to represent polynomials in three variables), the
data direction would ensure that the system would follow

through another level of recursive calls, and so on through
as many levels as the structure of the data dictates.”’

Representing term lists

Finally, we must confront the job of implementing a good
representation for term lists. A term list is, in effect, a
set of coefficients keyed by the order of the term. Hence,
any of the methods for representing sets, as discussed in
section 2.3.3, can be applied to this task. On the other hand,
our procedures add-terns and mul -terns always access
term lists sequentially from highest to lowest order. Thus,
we will use some kind of ordered list representation.

How should we structure the list that represents a term list?
One consideration is the "density" of the polynomials we
intend to manipulate. A polynomial is said to be dense if it
has nonzero coefficients in terms of most orders. If it has
many zero terms it is said to be sparse. For example,

2
A Pt nr oy
is a dense polynomial, whereas
o
E: f®ypas7 9

is sparse.

57 To make this work completely smoothly, we should also add to our
generic arithmetic system the ability to coerce a "number" to a polynomial
by regarding it as a polynomial of degree zero whose coefficient is the
number. This is necessary if we are going to perform operations such as

The term lists of dense polynomials are most efficiently
represented as lists of the coefficients. For example, A
above would be nicely represented as (1 2 0 3 -2
-5). The order of a term in this representation is the
length of the sublist beginning with that term's coefficient,

decremented by 1.% This would be a terrible representation
for a sparse polynomial such as B: There would be a giant
list of zeros punctuated by a few lonely nonzero terms. A
more reasonable representation of the term list of a sparse
polynomial is as a list of the nonzero terms, where each
term is a list containing the order of the term and the
coefficient for that order. In such a scheme, polynomial B
is efficiently represented as ((100 1) (2 2) (0 1)). As
most polynomial manipulations are performed on sparse
polynomials, we will use this method. We will assume that
term lists are represented as lists of terms, arranged from
highest-order to lowest-order term. Once we have made
this decision, implementing the selectors and constructors

for terms and term lists is straightforward:*

58 In these polynomial examples, we assume that we have implemented
the generic arithmetic system using the type mechanism suggested
in exercise 2.78. Thus, coefficients that are ordinary numbers will be
represented as the numbers themselves rather than as pairs whose car
is the symbol scheme-number.

59 Although we are assuming that term lists are ordered, we have
implemented adjoin-term to simply cons the new term onto the existing
term list. We can get away with this so long as we guarantee that the
procedures (such as add-terms) that use adjoin-term always call it with

(define (adjoin-termtermtermlist)

(if (=zero? (coeff term)
termlist
(cons termtermlist)))

(define (the-enpty-termist) '())
(define (first-termtermlist) (car termlist))

(define (rest-terms termlist) (cdr termlist))
(define (enpty-termist? termlist) (null? termlist))
(define (make-term order coeff) (list order coeff))
(define (order term (car tern))

(define (coeff term (cadr term)

where =zero? is as defined in exercise 2.80. (See also
exercise 2.87 below.)

Users of the polynomial package will create (tagged)
polynomials by means of the procedure:

(define (nake-pol ynom al var terns)

((get 'make 'polynomial) var terns))

Exercise 2.87. Install =zero? for polynomials in the
generic arithmetic package. This will allow adj oi n-t ermto

a higher-order term than appears in the list. If we did not want to make
such a guarantee, we could have implemented adjoin-term to be similar
to the adjoin-set constructor for the ordered-list representation of sets
(exercise 2.61).

work for polynomials with coefficients that are themselves
polynomials.

Exercise 2.88. Extend the polynomial system to include
subtraction of polynomials. (Hint: You may find it helpful to
define a generic negation operation.)

Exercise 2.89. Define procedures that implement the
term-list representation described above as appropriate for
dense polynomials.

Exercise 2.90. Suppose we want to have a polynomial
system that is efficient for both sparse and dense
polynomials. One way to do this is to allow both
kinds of term-list representations in our system. The
situation is analogous to the complex-number example of
section 2.4, where we allowed both rectangular and polar
representations. To do this we must distinguish different
types of term lists and make the operations on term lists
generic. Redesign the polynomial system to implement this
generalization. This is a major effort, not a local change.

Exercise 2.91. A univariate polynomial can be divided
by another one to produce a polynomial quotient and a
polynomial remainder. For example,

P |

—

r’—1
Division can be performed via long division. That is, divide
the highest-order term of the dividend by the highest-order

= r*+ r, remainder r — 1

term of the divisor. The result is the first term of the quotient.
Next, multiply the result by the divisor, subtract that from the
dividend, and produce the rest of the answer by recursively
dividing the difference by the divisor. Stop when the order
of the divisor exceeds the order of the dividend and declare
the dividend to be the remainder. Also, if the dividend ever
becomes zero, return zero as both quotient and remainder.

We can design a di v- pol y procedure on the model of add-
poly and mul -poly. The procedure checks to see if the
two polys have the same variable. If so, div-poly Strips
off the variable and passes the problem to div-terns,
which performs the division operation on term lists. Di v-
pol y finally reattaches the variable to the result supplied by
di v-terms. It is convenient to design di v-t er ms to compute
both the quotient and the remainder of a division. Di v-t er ns
can take two term lists as arguments and return a list of the
quotient term list and the remainder term list.

Complete the following definition of di v-terms by filling in
the missing expressions. Use this to implement di v- pol y,
which takes two polys as arguments and returns a list of
the quotient and remainder polys.
(define (div-terns L1 L2)
(if (enmpty-termist? L1)
(list (the-enpty-termist) (the-enpty-termist))

(let ((t1 (first-termL1))

(t2 (first-termL2)))

(if (> (order t2) (order t1))
(list (the-enpty-termist) L1)
(let ((newc (div (coeff t1) (coeff t2)))
(new-o (- (order t1) (order t2))))
(let ((rest-of-result

<
conpute rest of result recursively>

))

<
form conpl ete resul t>

))))))
Hierarchies of types in symbolic algebra

Our polynomial system illustrates how objects of one type
(polynomials) may in fact be complex objects that have
objects of many different types as parts. This poses no
real difficulty in defining generic operations. We need only
install appropriate generic operations for performing the
necessary manipulations of the parts of the compound
types. In fact, we saw that polynomials form a kind of
"recursive data abstraction," in that parts of a polynomial
may themselves be polynomials. Our generic operations
and our data-directed programming style can handle this
complication without much trouble.

On the other hand, polynomial algebra is a system for
which the data types cannot be naturally arranged in a
tower. For instance, it is possible to have polynomials
in x whose coefficients are polynomials in y. It is also
possible to have polynomials in y whose coefficients are
polynomials in x. Neither of these types is "above" the
other in any natural way, yet it is often necessary to add
together elements from each set. There are several ways
to do this. One possibility is to convert one polynomial
to the type of the other by expanding and rearranging
terms so that both polynomials have the same principal
variable. One can impose a towerlike structure on this
by ordering the variables and thus always converting any
polynomial to a "canonical form" with the highest-priority
variable dominant and the lower-priority variables buried in
the coefficients. This strategy works fairly well, except that
the conversion may expand a polynomial unnecessarily,
making it hard to read and perhaps less efficient to work
with. The tower strategy is certainly not natural for this
domain or for any domain where the user can invent new
types dynamically using old types in various combining
forms, such as trigonometric functions, power series, and
integrals.

It should not be surprising that controlling coercion is a
serious problem in the design of large-scale algebraic-
manipulation systems. Much of the complexity of such
systems is concerned with relationships among diverse
types. Indeed, it is fair to say that we do not yet completely

understand coercion. In fact, we do not yet completely
understand the concept of a data type. Nevertheless,
what we know provides us with powerful structuring
and modularity principles to support the design of large
systems.

Exercise 2.92. By imposing an ordering on variables,
extend the polynomial package so that addition and
multiplication of polynomials works for polynomials in
different variables. (This is not easy!)

Extended exercise: Rational functions

We can extend our generic arithmetic system to include
rational functions. These are "fractions" whose numerator
and denominator are polynomials, such as

r+1

-1
The system should be able to add, subtract, multiply, and
divide rational functions, and to perform such computations
as

I+1+ T _I3+2I?+3I+1

-1 -1 tirr—r-—1
(Here the sum has been simplified by removing
common factors. Ordinary "cross multiplication" would
have produced a fourth-degree polynomial over a fifth-
degree polynomial.)

If we modify our rational-arithmetic package so that it uses
generic operations, then it will do what we want, except for
the problem of reducing fractions to lowest terms.

Exercise 2.93. Modify the rational-arithmetic package to
use generic operations, but change nake-rat so that it
does not attempt to reduce fractions to lowest terms. Test
your system by calling nake-rational on two polynomials
to produce a rational function

(define pl (meke-polynomal 'x '((2 1)(0 1))))
(define p2 (meke-polynomal 'x '((3 1)(0 1))))

(define rf (meke-rational p2 pl))

Now add rf to itself, using add. You will observe that this
addition procedure does not reduce fractions to lowest
terms.

We can reduce polynomial fractions to lowest terms using
the same idea we used with integers: modifying nake-
rat to divide both the numerator and the denominator
by their greatest common divisor. The notion of "greatest
common divisor" makes sense for polynomials. In fact, we
can compute the GCD of two polynomials using essentially

the same Euclid's Algorithm that works for integers.*® The
integer version is

60 The fact that Euclid's Algorithm works for polynomials is formalized
in algebra by saying that polynomials form a kind of algebraic domain
called a Euclidean ring. A Euclidean ring is a domain that admits

(define (gcd a b)
(if (=bO0)
a
(gcd b (renminder a b))))

Using this, we could make the obvious modification to
define a GCD operation that works on term lists:
(define (gcd-terms a b)
(if (empty-termist? b)
a
(gcd-ternms b (remainder-terns a b))))

where r emai nder - t er ms picks out the remainder component
of the list returned by the term-list division operation di v-
t er ns that was implemented in exercise 2.91.

Exercise 2.94. Using di v-t er ms, implement the procedure
remai nder-ternms and use this to define gcd-terns as
above. Now write a procedure gcd- pol y that computes the
polynomial GCD of two polys. (The procedure should signal
an error if the two polys are not in the same variable.) Installl
in the system a generic operation gr eat est - conmon- di vi sor

addition, subtraction, and commutative multiplication, together with a way
of assigning to each element x of the ring a positive integer "measure”
m(x) with the properties that m(xy)> m(x) for any nonzero x and y and that,
given any x and y, there exists a q such thaty = gx + r and either r = 0 or
m(r)< m(x). From an abstract point of view, this is what is needed to prove
that Euclid's Algorithm works. For the domain of integers, the measure m
of an integer is the absolute value of the integer itself. For the domain of
polynomials, the measure of a polynomial is its degree.

that reduces to gcd- pol y for polynomials and to ordinary gcd
for ordinary numbers. As a test, try

(define pl (make-polynomial 'x '((4 1) (3 -1) (2 -2) (
(define p2 (make-polynomial 'x '"((3 1) (1 -1))))

(greatest-comon-di visor pl p2)
and check your result by hand.

Exercise 2.95. Define P4, P,, and P to be the polynomials

B ff—r41
B 11747
B 13r+5

Now define Q, to be the product of P, and P, and
Q. to be the product of P, and P;, and use greatest-
common-di vi sor (exercise 2.94) to compute the GCD of
Q. and Q,. Note that the answer is not the same as P;.
This example introduces noninteger operations into the
computation, causing difficulties with the GCD algorithm.**
To understand what is happening, try tracing gcd-terns
while computing the GCD or try performing the division by
hand.

61 In an implementation like MIT Scheme, this produces a polynomial that
is indeed a divisor of Q1 and Q2, but with rational coefficients. In many
other Scheme systems, in which division of integers can produce limited-
precision decimal numbers, we may fail to get a valid divisor.

We can solve the problem exhibited in exercise 2.95 if
we use the following modification of the GCD algorithm
(which really works only in the case of polynomials with
integer coefficients). Before performing any polynomial
division in the GCD computation, we multiply the dividend
by an integer constant factor, chosen to guarantee that no
fractions will arise during the division process. Our answer
will thus differ from the actual GCD by an integer constant
factor, but this does not matter in the case of reducing
rational functions to lowest terms; the GCD will be used to
divide both the numerator and denominator, so the integer
constant factor will cancel out.

More precisely, if P and Q are polynomials, let O, be the
order of P (i.e., the order of the largest term of P) and
let O, be the order of Q. Let ¢ be the leading coefficient
of Q. Then it can be shown that, if we multiply P by

the integerizing factor ¢, the resulting polynomial can
be divided by Q by using the di v-terns algorithm without
introducing any fractions. The operation of multiplying the
dividend by this constant and then dividing is sometimes
called the pseudodivision of P by Q. The remainder of the
division is called the pseudoremainder.

Exercise 2.96. a. Implement the procedure
pseudor emai nder - t er ns, Which is just like remai nder -t erns
except that it multiplies the dividend by the integerizing
factor described above before calling div-terns. Modify
gcd-terms 10 USe pseudor emai nder-terns, and verify that

gr eat est - comnon-di vi sor how produces an answer with
integer coefficients on the example in exercise 2.95.

b. The GCD now has integer coefficients, but they
are larger than those of P,. Modify gcd-terns so that
it removes common factors from the coefficients of the
answer by dividing all the coefficients by their (integer)
greatest common divisor.

Thus, here is how to reduce a rational function to lowest
terms:

Compute the GCD of the numerator and denominator,
using the version of gcd-t er ns from exercise 2.96.

When you obtain the GCD, multiply both numerator
and denominator by the same integerizing factor before
dividing through by the GCD, so that division by the
GCD will not introduce any noninteger coefficients. As
the factor you can use the leading coefficient of the
GCD raised to the power 1 + O, - O,, where O, is the
order of the GCD and O; is the maximum of the orders
of the numerator and denominator. This will ensure that
dividing the numerator and denominator by the GCD
will not introduce any fractions.

The result of this operation will be a numerator and
denominator with integer coefficients. The coefficients
will normally be very large because of all of the
integerizing factors, so the last step is to remove the
redundant factors by computing the (integer) greatest

common divisor of all the coefficients of the numerator
and the denominator and dividing through by this factor.

Exercise 2.97. a. Implement this algorithm as a procedure
reduce- t er ms that takes two term lists n and d as arguments
and returns a list nn, dd, which are n and d reduced to lowest
terms via the algorithm given above. Also write a procedure
reduce- pol y, analogous to add- pol y, that checks to see if
the two polys have the same variable. If so, reduce-poly
strips off the variable and passes the problem to reduce-
terns, then reattaches the variable to the two term lists
supplied by r educe-t er ns.

b. Define a procedure analogous to r educe- t er ms that does
what the original make-rat did for integers:

(define (reduce-integers n d)
(let ((g (gcd n d)))

(list (/ ng) (/ d9))))
and define reduce as a generic operation that calls
appl y-generic to dispatch to either reduce-poly (for
pol ynomi al arguments) or reduce-integers (for schene-
nunber arguments). You can now easily make the rational-
arithmetic package reduce fractions to lowest terms by
having nmake-rat call reduce before combining the given
numerator and denominator to form a rational number. The
system now handles rational expressions in either integers
or polynomials. To test your program, try the example at
the beginning of this extended exercise:

(define pl (make-polynomial 'x '((1 1)(0 1))))

(define p2 (make-polynomial 'x '((3 1)(0 -1))))
(define p3 (make-polynomial 'x '((1 1))))

(define p4 (make-polynomial 'x '((2 1)(0 -1))))

(define rfl (make-rational pl p2))
(define rf2 (make-rational p3 p4))

(add rfl rf2)

See if you get the correct answer, correctly reduced to
lowest terms.

The GCD computation is at the heart of any system
that does operations on rational functions. The algorithm
used above, although mathematically straightforward, is
extremely slow. The slowness is due partly to the
large number of division operations and partly to the
enormous size of the intermediate coefficients generated
by the pseudodivisions. One of the active areas in the
development of algebraic-manipulation systems is the
design of better algorithms for computing polynomial

GCDs.%”

62 One extremely efficient and elegant method for computing polynomial
GCDs was discovered by Richard Zippel (1979). The method is a
probabilistic algorithm, as is the fast test for primality that we discussed in
chapter 1. Zippel's book (1993) describes this method, together with other
ways to compute polynomial GCDs.

Chapter 3

Modularity, Objects, and State
M
(Even while it changes, it stands still.)
Heraclitus
Plus ¢a change, plus c'est la méme chose.
Alphonse Karr

The preceding chapters introduced the basic elements
from which programs are made. We saw how primitive
procedures and primitive data are combined to construct
compound entities, and we learned that abstraction is vital
in helping us to cope with the complexity of large systems.
But these tools are not sufficient for designing programs.
Effective program synthesis also requires organizational
principles that can guide us in formulating the overall design
of a program. In particular, we need strategies to help us
structure large systems so that they will be modular, that is,
so that they can be divided "naturally”" into coherent parts
that can be separately developed and maintained.

One powerful design strategy, which is particularly
appropriate to the construction of programs for modeling
physical systems, is to base the structure of our programs

on the structure of the system being modeled. For
each object in the system, we construct a corresponding
computational object. For each system action, we define
a symbolic operation in our computational model. Our
hope in using this strategy is that extending the model to
accommodate new objects or new actions will require no
strategic changes to the program, only the addition of the
new symbolic analogs of those objects or actions. If we
have been successful in our system organization, then to
add a new feature or debug an old one we will have to work
on only a localized part of the system.

To a large extent, then, the way we organize a large
program is dictated by our perception of the system
to be modeled. In this chapter we will investigate two
prominent organizational strategies arising from two rather
different "world views" of the structure of systems.
The first organizational strategy concentrates on objects,
viewing a large system as a collection of distinct objects
whose behaviors may change over time. An alternative
organizational strategy concentrates on the streams of
information that flow in the system, much as an electrical
engineer views a signal-processing system.

Both the object-based approach and the stream-
processing approach raise significant linguistic issues
in programming. With objects, we must be concerned
with how a computational object can change and yet
maintain its identity. This will force us to abandon our
old substitution model of computation (section 1.1.5) in

favor of a more mechanistic but less theoretically tractable
environment model of computation. The difficulties
of dealing with objects, change, and identity are a
fundamental consequence of the need to grapple with time
in our computational models. These difficulties become
even greater when we allow the possibility of concurrent
execution of programs. The stream approach can be most
fully exploited when we decouple simulated time in our
model from the order of the events that take place in the
computer during evaluation. We will accomplish this using
a technique known as delayed evaluation.

3.1 Assignment and Local State

We ordinarily view the world as populated by independent
objects, each of which has a state that changes over time.
An object is said to "have state" if its behavior is influenced
by its history. A bank account, for example, has state in that
the answer to the question "Can | withdraw $100?" depends
upon the history of deposit and withdrawal transactions.
We can characterize an object's state by one or more state
variables, which among them maintain enough information
about history to determine the object's current behavior.
In a simple banking system, we could characterize the
state of an account by a current balance rather than by
remembering the entire history of account transactions.

In a system composed of many objects, the objects are
rarely completely independent. Each may influence the
states of others through interactions, which serve to couple
the state variables of one object to those of other objects.
Indeed, the view that a system is composed of separate
objects is most useful when the state variables of the
system can be grouped into closely coupled subsystems
that are only loosely coupled to other subsystems.

This view of a system can be a powerful framework for
organizing computational models of the system. For such
a model to be modular, it should be decomposed into
computational objects that model the actual objects in
the system. Each computational object must have its own
local state variables describing the actual object's state.
Since the states of objects in the system being modeled
change over time, the state variables of the corresponding
computational objects must also change. If we choose to
model the flow of time in the system by the elapsed time
in the computer, then we must have a way to construct
computational objects whose behaviors change as our
programs run. In particular, if we wish to model state
variables by ordinary symbolic names in the programming
language, then the language must provide an assignment
operator to enable us to change the value associated with
a name.

3.1.1 Local State Variables

To illustrate what we mean by having a computational
object with time-varying state, let us model the situation
of withdrawing money from a bank account. We will do
this using a procedure wi t hdr aw, which takes as argument
an anount to be withdrawn. If there is enough money in
the account to accommodate the withdrawal, then wi t hdr aw
should return the balance remaining after the withdrawal.
Otherwise, wi t hdr awshould return the message Insufficient
funds. For example, if we begin with $100 in the account,
we should obtain the following sequence of responses
using wi t hdr aw:

(wi t hdraw 25)

75

(wi t hdraw 25)

50

(wi t hdraw 60)

"I nsufficient funds”

(wi t hdraw 15)
35

Observe that the expression (withdraw 25), evaluated
twice, yields different values. This is a new kind of behavior
for a procedure. Until now, all our procedures could
be viewed as specifications for computing mathematical
functions. A call to a procedure computed the value of
the function applied to the given arguments, and two calls

to the same procedure with the same arguments always
produced the same result.!

To implement wi t hdraw, we can use a variable bal ance
to indicate the balance of money in the account and
define withdraw as a procedure that accesses bal ance.
The wi t hdraw procedure checks to see if bal ance is at
least as large as the requested anount. If SO, withdraw
decrements bal ance by amount and returns the new value of
bal ance. Otherwise, wi t hdr aw returns the Insufficient funds
message. Here are the definitions of bal ance and wi t hdr aw:

(define bal ance 100)

(define (w thdraw anmount)
(if (>= bal ance anount)
(begin (set! balance (- bal ance anount))

bal ance)

"Insufficient funds"))

Decrementing bal ance is accomplished by the expression

(set! bal ance (- bal ance anount))

This uses the set! special form, whose syntax is

1 Actually, this is not quite true. One exception was the random-number
generator in section 1.2.6. Another exception involved the operation/type
tables we introduced in section 2.4.3, where the values of two calls to get
with the same arguments depended on intervening calls to put. On the
other hand, until we introduce assignment, we have no way to create such
procedures ourselves.

(set! <nane> <new- val ue>)

Here <name> is a symbol and <new-value> is any
expression. Set! changes <name> so that its value is the
result obtained by evaluating <new-value>. In the case at
hand, we are changing bal ance so that its new value will
be the result of subtracting anount from the previous value

of bal ance.’

W t hdr aw also uses the begi n special form to cause two
expressions to be evaluated in the case where the i f test
is true: first decrementing bal ance and then returning the
value of bal ance. In general, evaluating the expression

(begin <expl> <exp 2> ... <eXpe>)

causes the expressions <exp,> through <exp,> to be
evaluated in sequence and the value of the final expression

<exp,>to be returned as the value of the entire begi n form.’

Although wi t hdr aw works as desired, the variable bal ance
presents a problem. As specified above, bal ance is a
name defined in the global environment and is freely
accessible to be examined or modified by any procedure. It
would be much better if we could somehow make bal ance

2 The value of a set! expression is implementation-dependent. Set! should
be used only for its effect, not for its value.

3 We have already used begin implicitly in our programs, because in
Scheme the body of a procedure can be a sequence of expressions. Also,
the <consequent> part of each clause in a cond expression can be a
sequence of expressions rather than a single expression.

internal to wi t hdraw, SO that wi t hdraw would be the only
procedure that could access bal ance directly and any other
procedure could access bal ance only indirectly (through
calls to wi t hdraw). This would more accurately model the
notion that bal ance is a local state variable used by wi t hdr aw
to keep track of the state of the account.

We can make bal ance internal to wi t hdr aw by rewriting the
definition as follows:
(define new w t hdraw

(let ((balance 100))

(1 ambda (anount)
(if (>= bal ance anpunt)

(begin (set! balance (- bal ance anpunt))
bal ance)

"Insufficient funds"))))

What we have done here is use let to establish an
environment with a local variable bal ance, bound to
the initial value 100. Within this local environment, we
use | anbda to create a procedure that takes anount as
an argument and behaves like our previous withdraw
procedure. This procedure -- returned as the result of
evaluating the 1et expression -- iS new wi t hdraw, which

behaves in precisely the same way as wi t hdr aw but whose
variable bal ance is not accessible by any other procedure.”

Combining set! with local variables is the general
programming technique we will use for constructing
computational objects with local state. Unfortunately,
using this technique raises a serious problem: When
we first introduced procedures, we also introduced the
substitution model of evaluation (section 1.1.5) to provide
an interpretation of what procedure application means.
We said that applying a procedure should be interpreted
as evaluating the body of the procedure with the formal
parameters replaced by their values. The trouble is that,
as soon as we introduce assignment into our language,
substitution is no longer an adequate model of procedure
application. (We will see why this is so in section 3.1.3.) As
a consequence, we technically have at this point no way
to understand why the new wi t hdr aw procedure behaves as
claimed above. In order to really understand a procedure
such as new- wi t hdr aw, we will need to develop a new model
of procedure application. In section 3.2 we will introduce
such a model, together with an explanation of set ! and local

4 In programming-language jargon, the variable balance is said to be
encapsulated within the new-withdraw procedure. Encapsulation reflects
the general system-design principle known as the hiding principle: One
can make a system more modular and robust by protecting parts of the
system from each other; that is, by providing information access only to
those parts of the system that have a "need to know."

variables. First, however, we examine some variations on
the theme established by new wi t hdr aw.

The following procedure, mnake-withdraw, creates
"withdrawal processors." The formal parameter bal ance in
meke-wi t hdr aw specifies the initial amount of money in the

account.’

(define (nake-wi thdraw bal ance)
(1 anbda (anount)
(if (>= bal ance anount)

(begin (set! balance (- bal ance anpunt))
bal ance)

"Insufficient funds")))

Make- wi t hdr aw can be used as follows to create two objects
W and we:

(define WL (rmake-w t hdraw 100))
(define W2 (rmake-w t hdraw 100))
(W 50)

50

(W2 70)

30

(W2 40)

"I nsufficient funds"

(WL 40)

5 In contrast with new-withdraw above, we do not have to use let to make
balance a local variable, since formal parameters are already local. This
will be clearer after the discussion of the environment model of evaluation
in section 3.2. (See also exercise 3.10.)

10

Observe that wt and we are completely independent objects,
each with its own local state variable bal ance. Withdrawals
from one do not affect the other.

We can also create objects that handle deposits as well
as withdrawals, and thus we can represent simple bank
accounts. Here is a procedure that returns a "bank-account
object" with a specified initial balance:

(define (nake-account bal ance)
(define (wthdraw anpunt)
(if (>= bal ance anount)
(begin (set! balance (- bal ance anount))
bal ance)

"Insufficient funds"))

(define (deposit anount)
(set! bal ance (+ bal ance anount))

bal ance)
(define (dispatch m
(cond ((eg? m'withdraw) w thdraw)
((eq? m ' deposit) deposit)
(el se (error "Unknown request -- MAKE- ACCOUNT"
m)))

di spat ch)

Each call to nake-account sets up an environment with
a local state variable bal ance. Within this environment,
make- account defines procedures deposit andwi t hdr awthat
access bal ance and an additional procedure di spat ch that
takes a "message" as input and returns one of the two local
procedures. The di spat ch procedure itself is returned as
the value that represents the bank-account object. This is
precisely the message-passing style of programming that
we saw in section 2.4.3, although here we are using it in
conjunction with the ability to modify local variables.

Make- account can be used as follows:

(define acc (meke-account 100))
((acc 'w thdraw) 50)

50

((acc 'w thdraw) 60)

"I nsufficient funds"

((acc 'deposit) 40)

90

((acc 'w thdraw) 60)

30

Each call to acc returns the locally defined deposit or
wi t hdr aw procedure, which is then applied to the specified
amount . As was the case with nake-wi t hdr aw, another call
t0 make- account

(define acc2 (nmake-account 100))

will produce a completely separate account object, which
maintains its own local bal ance.

Exercise 3.1. An accumulator is a procedure that is
called repeatedly with a single numeric argument and
accumulates its arguments into a sum. Each time it is
called, it returns the currently accumulated sum. Write a
procedure nake- accunul at or that generates accumulators,
each maintaining an independent sum. The input to nake-
accunul at or should specify the initial value of the sum; for
example

(define A (make-accunul ator 5))

(A 10)

15

(A 10)

25

Exercise 3.2. In software-testing applications, it is useful
to be able to count the number of times a given procedure
is called during the course of a computation. Write a
procedure meke- noni t or ed that takes as input a procedure,
f, that itself takes one input. The result returned by nake-
moni t or ed is a third procedure, say nf, that keeps track of
the number of times it has been called by maintaining an
internal counter. If the input to nf is the special symbol how
many- cal | s?, then nf returns the value of the counter. If the
input is the special symbol reset - count, then nf resets the
counter to zero. For any other input, ni returns the result
of calling f on that input and increments the counter. For
instance, we could make a monitored version of the sqrt
procedure:

(define s (make-nonitored sqrt))

(s 100)
10

(s ' how many-call s?)

1

Exercise 3.3. Modify the make- account procedure so that
it creates password-protected accounts. That is, nake-
account should take a symbol as an additional argument,
as in

(define acc (memke-account 100 'secret-password))

The resulting account object should process a request only
if it is accompanied by the password with which the account
was created, and should otherwise return a complaint:

((acc 'secret-password 'w thdraw) 40)
60

((acc 'sone-other-password 'deposit) 50)

"I ncorrect password"

Exercise 3.4. Modify the nake-account procedure of
exercise 3.3 by adding another local state variable so that, if
an account is accessed more than seven consecutive times
with an incorrect password, it invokes the procedure cal | -
t he- cops.

3.1.2 The Benefits of Introducing
Assignment

As we shall see, introducing assignment into our
programming language leads us into a thicket of difficult

conceptual issues. Nevertheless, viewing systems as
collections of objects with local state is a powerful
technique for maintaining a modular design. As a simple
example, consider the design of a procedure rand that,
whenever it is called, returns an integer chosen at random.

It is not at all clear what is meant by "chosen at random."
What we presumably want is for successive calls to rand
to produce a sequence of numbers that has statistical
properties of uniform distribution. We will not discuss
methods for generating suitable sequences here. Rather,
let us assume that we have a procedure rand- updat e that
has the property that if we start with a given number x, and
form

X2 = (rand-update x

1)

X3 = (rand-update x

2)
then the sequence of values Xi, Xy, Xs, ..., Will have the
desired statistical properties.”

6 One common way to implement rand-update is to use the rule
that x is updated to ax + b modulo m, where a, b, and m are
appropriately chosen integers. Chapter 3 of Knuth 1981 includes an
extensive discussion of techniques for generating sequences of random
numbers and establishing their statistical properties. Notice that the rand-
update procedure computes a mathematical function: Given the same
input twice, it produces the same output. Therefore, the number sequence
produced by rand-update certainly is not "random," if by "random" we insist

We can implement rand as a procedure with a local state
variable x that is initialized to some fixed value random ini t .
Each call to r and computes r and- updat e of the current value
of x, returns this as the random number, and also stores
this as the new value of x.
(define rand

(let ((x randominit))

(lambda ()
(set! x (rand-update x))

x)))

Of course, we could generate the same sequence of
random numbers without using assignment by simply
calling r and- updat e directly. However, this would mean that
any part of our program that used random numbers would
have to explicitly remember the current value of x to be
passed as an argument to r and- updat e. To realize what an
annoyance this would be, consider using random numbers
to implement a technique called Monte Carlo simulation.

The Monte Carlo method consists of choosing sample
experiments at random from a large set and then making
deductions on the basis of the probabilities estimated from

that each number in the sequence is unrelated to the preceding number.
The relation between "real randomness" and so-called pseudo-random
sequences, which are produced by well-determined computations and yet
have suitable statistical properties, is a complex question involving difficult
issues in mathematics and philosophy. Kolmogorov, Solomonoff, and
Chaitin have made great progress in clarifying these issues; a discussion
can be found in Chaitin 1975.

tabulating the results of those experiments. For example,

we can approximate T using the fact that 6/fT° is the
probability that two integers chosen at random will have
no factors in common; that is, that their greatest common

divisor will be 1.” To obtain the approximation to 2T, we
perform a large number of experiments. In each experiment
we choose two integers at random and perform a test to
see if their GCD is 1. The fraction of times that the test is

passed gives us our estimate of 6/7T°, and from this we
obtain our approximation to T.

The heart of our program is a procedure nonte-carl o,
which takes as arguments the number of times to try an
experiment, together with the experiment, represented as
a no-argument procedure that will return either true or false
each time it is run. Mont e- car | o runs the experiment for the
designated number of trials and returns a number telling
the fraction of the trials in which the experiment was found
to be true.

(define (estimate-pi trials)
(sqrt (/ 6 (nonte-carlo trials cesaro-test))))

(define (cesaro-test)
(= (gcd (rand) (rand)) 1))

(define (nonte-carlo trials experinent)

7 This theorem is due to E. Cesaro. See section 4.5.2 of Knuth 1981 for
a discussion and a proof.

(define (iter trials-renmaining trials-passed)
(cond ((= trials-remaining 0)
(/ trials-passed trials))
((experiment)
(iter (- trials-remaining 1) (+ trials-pass
(el se
(iter (- trials-remaining 1) trials-passed))))

(iter trials 0))

Now let us try the same computation using rand- updat e
directly rather than rand, the way we would be forced to
proceed if we did not use assignment to model local state:

(define (estimate-pi trials)
(sgrt (/ 6 (randomgcd-test trials randominit))))

(define (randomgcd-test trials initial-x)
(define (iter trials-remaining trials-passed x)

(let ((x1 (rand-update x)))
(let ((x2 (rand-update x1)))
(cond ((= trials-remsining 0)
(/ trials-passed trials))

((= (gcd x1 x2) 1)

(iter (- trials-remaining 1)
(+ trials-passed 1)
x2))

(el se

(iter (- trials-remaining 1)
trial s-passed

x2))))))
(iter trials O initial-x))

While the program is still simple, it betrays some painful
breaches of modularity. In our first version of the program,
using rand, we can express the Monte Carlo method
directly as a general nonte-carl o procedure that takes
as an argument an arbitrary experiment procedure. In
our second version of the program, with no local state
for the random-number generator, random gcd-t est mMust
explicitly manipulate the random numbers x1 and x2 and
recycle x2 through the iterative loop as the new input to
r and- updat e. This explicit handling of the random numbers
intertwines the structure of accumulating test results with
the fact that our particular experiment uses two random
numbers, whereas other Monte Carlo experiments might
use one random number or three. Even the top-level
procedure esti mat e- pi has to be concerned with supplying
an initial random number. The fact that the random-number

generator's insides are leaking out into other parts of the
program makes it difficult for us to isolate the Monte Carlo
idea so that it can be applied to other tasks. In the first
version of the program, assignment encapsulates the state
of the random-number generator within the r and procedure,
so that the details of random-number generation remain
independent of the rest of the program.

The general phenomenon illustrated by the Monte Carlo
example is this: From the point of view of one part of a
complex process, the other parts appear to change with
time. They have hidden time-varying local state. If we
wish to write computer programs whose structure reflects
this decomposition, we make computational objects (such
as bank accounts and random-number generators) whose
behavior changes with time. We model state with local
state variables, and we model the changes of state with
assignments to those variables.

It is tempting to conclude this discussion by saying that, by
introducing assignment and the technique of hiding state
in local variables, we are able to structure systems in a
more modular fashion than if all state had to be manipulated
explicitly, by passing additional parameters. Unfortunately,
as we shall see, the story is not so simple.

Exercise 3.5. Monte Carlo integration is a method of
estimating definite integrals by means of Monte Carlo
simulation. Consider computing the area of a region of
space described by a predicate P(x, y) that is true for

points (X, y) in the region and false for points not in the
region. For example, the region contained within a circle
of radius 3 centered at (5, 7) is described by the predicate

that tests whether (x - 5)° + (y - 7)°< 3°. To estimate the
area of the region described by such a predicate, begin by
choosing a rectangle that contains the region. For example,
a rectangle with diagonally opposite corners at (2, 4) and
(8, 10) contains the circle above. The desired integral is the
area of that portion of the rectangle that lies in the region.
We can estimate the integral by picking, at random, points
(x,y) that lie in the rectangle, and testing P(x, y) for each
point to determine whether the point lies in the region. If we
try this with many points, then the fraction of points that fall
in the region should give an estimate of the proportion of
the rectangle that lies in the region. Hence, multiplying this
fraction by the area of the entire rectangle should produce
an estimate of the integral.

Implement Monte Carlo integration as a procedure
estimte-integral that takes as arguments a predicate P,
upper and lower bounds x1, x2, y1, and y2 for the rectangle,
and the number of trials to perform in order to produce
the estimate. Your procedure should use the same nont e-
car | o procedure that was used above to estimate #T. Use
your estimate-integral to produce an estimate of T by
measuring the area of a unit circle.

You will find it useful to have a procedure that returns
a number chosen at random from a given range. The

following randomin-range procedure implements this in
terms of the randomprocedure used in section 1.2.6, which

returns a nonnegative number less than its input.®

(define (randomin-range | ow high)

(let ((range (- high low)))
(+ low (randomrange))))
Exercise 3.6. It is useful to be able to reset a random-
number generator to produce a sequence starting from a
given value. Design a new rand procedure that is called
with an argument that is either the symbol gener at e or the
symbol reset and behaves as follows: (rand ' generate)
produces a new random number; ((rand ‘reset) <new
val ue>) resets the internal state variable to the designated
<new-value>. Thus, by resetting the state, one can
generate repeatable sequences. These are very handy
to have when testing and debugging programs that use
random numbers.

3.1.3 The Costs of Introducing
Assignment
As we have seen, the set! operation enables us to model

objects that have local state. However, this advantage
comes at a price. Our programming language can no

8 MIT Scheme provides such a procedure. If random is given an exact
integer (as in section 1.2.6) it returns an exact integer, but if it is given a
decimal value (as in this exercise) it returns a decimal value.

longer be interpreted in terms of the substitution model of
procedure application that we introduced in section 1.1.5.
Moreover, no simple model with "nice" mathematical
properties can be an adequate framework for dealing with
objects and assignment in programming languages.

So long as we do not use assignments, two evaluations of
the same procedure with the same arguments will produce
the same result, so that procedures can be viewed as
computing mathematical functions. Programming without
any use of assignments, as we did throughout the first two
chapters of this book, is accordingly known as functional
programming.

To understand how assignment complicates matters,
consider a simplified version of the make-withdraw
procedure of section 3.1.1 that does not bother to check for
an insufficient amount:

(define (nake-sinplified-w thdraw bal ance)

(1l anbda (anount)
(set! bal ance (- bal ance anpunt))

bal ance))
(define W (make-sinplified-w thdraw 25))
(W 20)
5
(W 10)
- 5

Compare this procedure with the following nake-
decr ement er procedure, which does not use set ! :

(define (nmake-decrenenter bal ance)
(1 anbda (anount)
(- bal ance ampunt)))

Make- decrenent er returns a procedure that subtracts its
input from a designated amount bal ance, but there is no
accumulated effect over successive calls, as with make-
si nplified-w thdraw

(define D (meke-decrenenter 25))

(D 20)

5

(D 10)

15

We can use the substitution model to explain how nake-
decrementer Wworks. For instance, let us analyze the
evaluation of the expression

((make- decrenmenter 25) 20)

We first simplify the operator of the combination by
substituting 25 for bal ance in the body of nake- decr enent er .
This reduces the expression to

((lambda (anmount) (- 25 anount)) 20)

Now we apply the operator by substituting 20 for armount in
the body of the | anbda expression:

(- 25 20)
The final answer is 5.

Observe, however, what happens if we attempt a similar
substitution analysis with make- si npl i fi ed- wi t hdr aw;

((make-sinplified-w thdraw 25) 20)

We first simplify the operator by substituting 25 for bal ance
in the body of make- si npl i fi ed- wi t hdr aw. This reduces the

expression to’
((lanmbda (anount) (set! balance (- 25 anmount)) 25) 20)

Now we apply the operator by substituting 20 for amount in
the body of the | anbda expression:

(set! balance (- 25 20)) 25

If we adhered to the substitution model, we would have
to say that the meaning of the procedure application is to
first set bal ance to 5 and then return 25 as the value of the
expression. This gets the wrong answer. In order to get the
correct answer, we would have to somehow distinguish the
first occurrence of bal ance (before the effect of the set!)
from the second occurrence of bal ance (after the effect of
the set !), and the substitution model cannot do this.

The trouble here is that substitution is based ultimately on
the notion that the symbols in our language are essentially
names for values. But as soon as we introduce set! and
the idea that the value of a variable can change, a variable
can no longer be simply a name. Now a variable somehow
refers to a place where a value can be stored, and the
value stored at this place can change. In section 3.2 we

9 We don't substitute for the occurrence of balance in the set! expression
because the <name> in a set! is not evaluated. If we did substitute for it,
we would get (set! 25 (- 25 amount)), which makes no sense.

will see how environments play this role of "place" in our
computational model.

Sameness and change

The issue surfacing here is more profound than the mere
breakdown of a particular model of computation. As soon
as we introduce change into our computational models,
many notions that were previously straightforward become
problematical. Consider the concept of two things being
"the same."

Suppose we call nake-decrenenter twice with the same
argument to create two procedures:

(define D1 (meke-decrenenter 25))

(define D2 (meke-decrenenter 25))

Are D1 and D2 the same? An acceptable answer is yes,
because D1 and D2 have the same computational behavior
-- each is a procedure that subtracts its input from 25.
In fact, b1 could be substituted for b2 in any computation
without changing the result.

Contrast this with making two calls to make-sinplified-
wi t hdr aw.

(define W (rake-sinplified-wthdraw 25))

(define W2 (nmake-sinplified-wthdraw 25))

Are w. and w the same? Surely not, because calls to w
and w have distinct effects, as shown by the following
sequence of interactions:

5
(W 20)

- 15

(V2 20)

5

Even though w and v are "equal" in the sense that they
are both created by evaluating the same expression, (make-
sinplified-withdraw 25), it is not true that w could be
substituted for vz in any expression without changing the
result of evaluating the expression.

A language that supports the concept that "equals can be
substituted for equals” in an expresssion without changing
the value of the expression is said to be referentially
transparent. Referential transparency is violated when we
include set! in our computer language. This makes it
tricky to determine when we can simplify expressions
by substituting equivalent expressions. Consequently,
reasoning about programs that use assignment becomes
drastically more difficult.

Once we forgo referential transparency, the notion of what it
means for computational objects to be "the same" becomes
difficult to capture in a formal way. Indeed, the meaning
of "same" in the real world that our programs model is
hardly clear in itself. In general, we can determine that two
apparently identical objects are indeed "the same one" only
by modifying one object and then observing whether the
other object has changed in the same way. But how can

we tell if an object has "changed" other than by observing
the "same" object twice and seeing whether some property
of the object differs from one observation to the next?
Thus, we cannot determine "change" without some a priori
notion of "sameness," and we cannot determine sameness
without observing the effects of change.

As an example of how this issue arises in programming,
consider the situation where Peter and Paul have a bank
account with $100 in it. There is a substantial difference
between modeling this as

(define peter-acc (make-account 100))
(define paul -acc (make-account 100))

and modeling it as

(define peter-acc (make-account 100))

(define paul -acc peter-acc)

In the first situation, the two bank accounts are distinct.
Transactions made by Peter will not affect Paul's account,
and vice versa. In the second situation, however, we have
defined paul -acc to be the same thing as peter-acc. In
effect, Peter and Paul now have a joint bank account, and if
Peter makes a withdrawal from pet er - acc Paul will observe
less money in paul -acc. These two similar but distinct
situations can cause confusion in building computational
models. With the shared account, in particular, it can be
especially confusing that there is one object (the bank
account) that has two different names (pet er - acc and paul -
acc); if we are searching for all the places in our program

where paul -acc can be changed, we must remember to
look also at things that change pet er - acc.™

With reference to the above remarks on "sameness"
and "change," observe that if Peter and Paul could only
examine their bank balances, and could not perform
operations that changed the balance, then the issue of
whether the two accounts are distinct would be moot. In
general, so long as we never modify data objects, we
can regard a compound data object to be precisely the
totality of its pieces. For example, a rational number is
determined by giving its humerator and its denominator.
But this view is no longer valid in the presence of change,
where a compound data object has an "identity" that is
something different from the pieces of which it is composed.
A bank account is still "the same" bank account even if we
change the balance by making a withdrawal; conversely,
we could have two different bank accounts with the same

10 The phenomenon of a single computational object being accessed
by more than one name is known as aliasing. The joint bank account
situation illustrates a very simple example of an alias. In section 3.3 we
will see much more complex examples, such as "distinct" compound data
structures that share parts. Bugs can occur in our programs if we forget
that a change to an object may also, as a "side effect," change a "different"
object because the two "different” objects are actually a single object
appearing under different aliases. These so-called side-effect bugs are
so difficult to locate and to analyze that some people have proposed that
programming languages be designed in such a way as to not allow side
effects or aliasing (Lampson et al. 1981; Morris, Schmidt, and Wadler
1980).

state information. This complication is a consequence, not
of our programming language, but of our perception of
a bank account as an object. We do not, for example,
ordinarily regard a rational number as a changeable object
with identity, such that we could change the numerator and
still have "the same" rational number.

Pitfalls of imperative programming

In contrast to functional programming, programming that
makes extensive use of assignment is known as imperative
programming. In addition to raising complications about
computational models, programs written in imperative style
are susceptible to bugs that cannot occur in functional
programs. For example, recall the iterative factorial
program from section 1.2.1:
(define (factorial n)
(define (iter product counter)
(if (> counter n)

pr oduct
(iter (* counter product)

(+ counter 1))))

(iter 1 1))

Instead of passing arguments in the internal iterative loop,
we could adopt a more imperative style by using explicit
assignment to update the values of the variables product
and counter:

(define (factorial n)

(let ((product 1)
(counter 1))

(define (iter)
(if (> counter n)

pr oduct
(begin (set! product (* counter product))

(set! counter (+ counter 1))

(iter))))

(iter)))

This does not change the results produced by the program,
but it does introduce a subtle trap. How do we decide
the order of the assignments? As it happens, the program
is correct as written. But writing the assignments in the
opposite order

(set! counter (+ counter 1))
(set! product (* counter product))

would have produced a different, incorrect result. In
general, programming with assignment forces us to
carefully consider the relative orders of the assignments
to make sure that each statement is using the correct
version of the variables that have been changed. This

issue simply does not arise in functional programs.

11 In view of this, it is ironic that introductory programming is most
often taught in a highly imperative style. This may be a vestige of a

The complexity of imperative programs becomes even
worse if we consider applications in which several
processes execute concurrently. We will return to this
in section 3.4. First, however, we will address the issue
of providing a computational model for expressions that
involve assignment, and explore the uses of objects with
local state in designing simulations.

Exercise 3.7. Consider the bank account objects created
by make- account , with the password modification described
in exercise 3.3. Suppose that our banking system requires
the ability to make joint accounts. Define a procedure nake-
j oi nt that accomplishes this. make-j oi nt should take three
arguments. The first is a password-protected account. The
second argument must match the password with which the
account was defined in order for the nake-j oi nt operation
to proceed. The third argument is a new password. Make-
joint iS to create an additional access to the original
account using the new password. For example, if pet er - acc
is a bank account with password open- sesane, then

(define paul -acc

belief, common throughout the 1960s and 1970s, that programs that call
procedures must inherently be less efficient than programs that perform
assignments. (Steele (1977) debunks this argument.) Alternatively it may
reflect a view that step-by-step assignment is easier for beginners to
visualize than procedure call. Whatever the reason, it often saddles
beginning programmers with "should | set this variable before or after
that one" concerns that can complicate programming and obscure the
important ideas.

(make-joint peter-acc 'open-sesane 'rosebud))

will allow one to make transactions on pet er - acc using the
name paul - acc and the password rosebud. You may wish
to modify your solution to exercise 3.3 to accommodate this
new feature.

Exercise 3.8. When we defined the evaluation model in
section 1.1.3, we said that the first step in evaluating an
expression is to evaluate its subexpressions. But we never
specified the order in which the subexpressions should
be evaluated (e.g., left to right or right to left). When we
introduce assignment, the order in which the arguments to
a procedure are evaluated can make a difference to the
result. Define a simple procedure f such that evaluating
(+ (f 0) (f 1)) will return O if the arguments to + are
evaluated from left to right but will return 1 if the arguments
are evaluated from right to left.

3.2 The Environment Model of
Evaluation

When we introduced compound procedures in chapter 1,
we used the substitution model of evaluation (section 1.1.5)
to define what is meant by applying a procedure to
arguments:

To apply a compound procedure to arguments,
evaluate the body of the procedure with each formal
parameter replaced by the corresponding argument.

Once we admit assignment into our programming
language, such a definition is no longer adequate. In
particular, section 3.1.3 argued that, in the presence of
assignment, a variable can no longer be considered to
be merely a name for a value. Rather, a variable must
somehow designate a "place" in which values can be
stored. In our new model of evaluation, these places will be
maintained in structures called environments.

An environment is a sequence of frames. Each frame is a
table (possibly empty) of bindings, which associate variable
names with their corresponding values. (A single frame
may contain at most one binding for any variable.) Each
frame also has a pointer to its enclosing environment,
unless, for the purposes of discussion, the frame is
considered to be global. The value of a variable with respect
to an environment is the value given by the binding of the
variable in the first frame in the environment that contains
a binding for that variable. If no frame in the sequence
specifies a binding for the variable, then the variable is said
to be unbound in the environment.

Figure 3.1: A simple environment structure.

L
x:3
F: 0
(d o
II III
=: 0 n:1
X7 ¥l
A B
Figure 3.1 shows a simple environment structure consisting
of three frames, labeled I, II, and 1lI. In the diagram, A, B,

C, and D are pointers to environments. C and D point to
the same environment. The variables z and x are bound
in frame Il, while y and x are bound in frame I. The value
of x in environment D is 3. The value of x with respect to
environment B is also 3. This is determined as follows: We
examine the first frame in the sequence (frame Ill) and do
not find a binding for x, so we proceed to the enclosing
environment D and find the binding in frame I. On the other
hand, the value of x in environment A is 7, because the first
frame in the sequence (frame Il) contains a binding of x to

7. With respect to environment A, the binding of x to 7 in
frame Il is said to shadow the binding of x to 3 in frame I.

The environment is crucial to the evaluation process,
because it determines the context in which an expression
should be evaluated. Indeed, one could say that
expressions in a programming language do not, in
themselves, have any meaning. Rather, an expression
acquires a meaning only with respect to some environment
in which it is evaluated. Even the interpretation of an
expression as straightforward as (+ 1 1) depends on
an understanding that one is operating in a context in
which + is the symbol for addition. Thus, in our model
of evaluation we will always speak of evaluating an
expression with respect to some environment. To describe
interactions with the interpreter, we will suppose that there
is a global environment, consisting of a single frame (with
no enclosing environment) that includes values for the
symbols associated with the primitive procedures. For
example, the idea that + is the symbol for addition is
captured by saying that the symbol + is bound in the global
environment to the primitive addition procedure.

3.2.1 The Rules for Evaluation

The overall specification of how the interpreter evaluates a
combination remains the same as when we first introduced
it in section 1.1.3:

To evaluate a combination:

1. Evaluate the subexpressions of the combination.*”

2. Apply the value of the operator subexpression to the
values of the operand subexpressions.

The environment model of evaluation replaces the
substitution model in specifying what it means to apply a
compound procedure to arguments.

In the environment model of evaluation, a procedure is
always a pair consisting of some code and a pointer to an
environment. Procedures are created in one way only: by
evaluating a | anbda expression. This produces a procedure
whose code is obtained from the text of the 1anbda
expression and whose environment is the environment in
which the | anbda expression was evaluated to produce the
procedure. For example, consider the procedure definition
(define (square x)

(" xx))

12 Assignment introduces a subtlety into step 1 of the evaluation rule.
As shown in exercise 3.8, the presence of assignment allows us to
write expressions that will produce different values depending on the
order in which the subexpressions in a combination are evaluated.
Thus, to be precise, we should specify an evaluation order in step 1
(e.g., left to right or right to left). However, this order should always
be considered to be an implementation detail, and one should never
write programs that depend on some particular order. For instance, a
sophisticated compiler might optimize a program by varying the order
in which subexpressions are evaluated.

evaluated in the global environment. The procedure
definition syntax is just syntactic sugar for an underlying
implicit | ambda expression. It would have been equivalent
to have used

(define square
(lanmbda (x) (* x Xx)))

which evaluates (1 anbda (x) (* x x)) and binds square to
the resulting value, all in the global environment.

Figure 3.2 shows the result of evaluating this define
expression. The procedure object is a pair whose code
specifies that the procedure has one formal parameter,
namely x, and a procedure body (* x x). The environment
part of the procedure is a pointer to the global environment,
since that is the environment in which the |anbda
expression was evaluated to produce the procedure. A new
binding, which associates the procedure object with the
symbol square, has been added to the global frame. In
general, define creates definitions by adding bindings to
frames.

Figure 3.2: Environment structure produced by evaluating (def i ne
(square x) (* x x)) inthe global environment.

global ather variables

[oy BUATA: —|

(dafine f=quara x]

(%22

paraneterz: x

body: ¥ xx)
Now that we have seen how procedures are created, we
can describe how procedures are applied. The environment
model specifies: To apply a procedure to arguments, create
a new environment containing a frame that binds the
parameters to the values of the arguments. The enclosing
environment of this frame is the environment specified by
the procedure. Now, within this new environment, evaluate
the procedure body.

To show how this rule is followed, figure 3.3 illustrates the
environment structure created by evaluating the expression
(square 5) in the global environment, where square is the

procedure generated in figure 3.2. Applying the procedure
results in the creation of a new environment, labeled E1 in
the figure, that begins with a frame in which x, the formal
parameter for the procedure, is bound to the argument 5.
The pointer leading upward from this frame shows that the
frame's enclosing environment is the global environment.
The global environment is chosen here, because this is
the environment that is indicated as part of the square
procedure object. Within E1, we evaluate the body of the
procedure, (* x x) . Since the value of x in E1 is 5, the result
is(* 5 5), or 25.

Figure 3.3: Environment created by evaluating (squar e 5) in the
global environment.

global arher variabies
Aoy Bquars:
F
f=quara §) i
El —> x:6
par=matars: x (*xa)

body: (¥ xx)
The environment model of procedure application can be
summarized by two rules:

A procedure object is applied to a set of arguments by
constructing a frame, binding the formal parameters of
the procedure to the arguments of the call, and then
evaluating the body of the procedure in the context of
the new environment constructed. The new frame has
as its enclosing environment the environment part of
the procedure object being applied.

A procedure is created by evaluating a | anbda
expression relative to a given environment. The
resulting procedure object is a pair consisting of the
text of the | anbda expression and a pointer to the
environment in which the procedure was created.

We also specify that defining a symbol using define
creates a binding in the current environment frame and

assigns to the symbol the indicated value.*® Finally, we
specify the behavior of set!, the operation that forced
us to introduce the environment model in the first place.
Evaluating the expression (set! <variable> <val ue>) in
some environment locates the binding of the variable in the
environment and changes that binding to indicate the new
value. That is, one finds the first frame in the environment

13 If there is already a binding for the variable in the current frame, then
the binding is changed. This is convenient because it allows redefinition
of symbols; however, it also means that define can be used to change
values, and this brings up the issues of assignment without explicitly using
set!. Because of this, some people prefer redefinitions of existing symbols
to signal errors or warnings.

that contains a binding for the variable and modifies that
frame. If the variable is unbound in the environment, then
set! signals an error.

These evaluation rules, though considerably more
complex than the substitution model, are still reasonably
straightforward. Moreover, the evaluation model, though
abstract, provides a correct description of how the
interpreter evaluates expressions. In chapter 4 we shall see
how this model can serve as a blueprint for implementing
a working interpreter. The following sections elaborate
the details of the model by analyzing some illustrative
programs.

3.2.2 Applying Simple Procedures

When we introduced the substitution model in section 1.1.5
we showed how the combination (f 5) evaluates to 136,
given the following procedure definitions:

(define (square x)

(* xx))
(define (sumof-squares x y)

(+ (square x) (square y)))
(define (f a)

(sumof-squares (+ a 1l) (* a 2)))

We can analyze the same example using the environment
model. Figure 3.4 shows the three procedure objects

created by evaluating the definitions of f, square, and
sum of - squar es in the global environment. Each procedure

object consists of some code, together with a pointer to the
global environment.

Figure 3.4: Procedure objects in the global frame.

sun-of-squares:
global

2quara:
anov q

£:
i v

paranatars: a paranstars: x paranaters: x, ¥
body: (gum-of-zquaraz body: (% xx) body: (+ (aquara x)
f+ail) faquars y))
f%a21)
In figure 3.5 we see the environment structure created by
evaluating the expression (f 5). The call to f creates a
new environment E1 beginning with a frame in which a, the
formal parameter of f, is bound to the argument 5. In E1,

we evaluate the body of f:

(sumof -squares (+ a 1) (* a 2))

Figure 3.5: Environments created by evaluating (f 5) using the
procedures in figure 3.4.

global
any
h 3 F
(£ 5)
i
El—w a:6 El—= ;'10 E3—m x:8 Ed4—m x:10
{eum-of-squares (+ [=quars x) () (xxx)
f+ai) faquara F))

(2 2))

To evaluate this combination, we first evaluate the
subexpressions. The first subexpression, sum of - squar es,
has a value that is a procedure object. (Notice how this
value is found: We first look in the first frame of E1, which
contains no binding for sum of - squar es. Then we proceed
to the enclosing environment, i.e. the global environment,
and find the binding shown in figure 3.4.) The other two
subexpressions are evaluated by applying the primitive
operations + and * to evaluate the two combinations (+ a
1) and (* a 2) to obtain 6 and 10, respectively.

Now we apply the procedure object sum of - squar es to the
arguments 6 and 10. This results in a new environment
E2 in which the formal parameters x and y are bound to
the arguments. Within E2 we evaluate the combination (+

(square x) (square y)). Thisleads us to evaluate (square
x) , where square is found in the global frame and x is 6.
Once again, we set up a new environment, E3, in which x is
bound to 6, and within this we evaluate the body of square,
which is (* x x). Also as part of applying sum of - squar es,
we must evaluate the subexpression (square y), wherey is
10. This second call to squar e creates another environment,
E4, in which x, the formal parameter of squar e, is bound to
10. And within E4 we must evaluate (* x x).

The important point to observe is that each call to square
creates a new environment containing a binding for x.
We can see here how the different frames serve to keep
separate the different local variables all named x. Notice
that each frame created by square points to the global
environment, since this is the environment indicated by the
squar e procedure object.

After the subexpressions are evaluated, the results are
returned. The values generated by the two calls to square
are added by sum of - squar es, and this result is returned by
f . Since our focus here is on the environment structures,
we will not dwell on how these returned values are passed
from call to call; however, this is also an important aspect
of the evaluation process, and we will return to it in detail
in chapter 5.

Exercise 3.9. In section 1.2.1 we used the substitution
model to analyze two procedures for computing factorials,
a recursive version

(define (factorial n)
(if (=n1
1

(* n (factorial (- n 1)))))

and an iterative version

(define (factorial n)
(fact-iter 1 1 n))
(define (fact-iter product counter max-count)

(if (> counter max-count)
product
(fact-iter (* counter product)

(+ counter 1)

max-count)))
Show the environment structures created by evaluating
(factorial 6) using each version of the factorial
procedure.**

3.2.3 Frames as the Repository of Local
State

We can turn to the environment model to see how
procedures and assignment can be used to represent
objects with local state. As an example, consider the

14 The environment model will not clarify our claim in section 1.2.1 that the
interpreter can execute a procedure such as fact-iter in a constant amount
of space using tail recursion. We will discuss tail recursion when we deal
with the control structure of the interpreter in section 5.4.

"withdrawal processor" from section 3.1.1 created by
calling the procedure

(define (nmake-withdraw bal ance)
(1 anbda (anount)
(if (>= bal ance anount)

(begin (set! balance (- bal ance anount))
bal ance)

"I nsufficient funds")))
Let us describe the evaluation of
(define W (rmake-w t hdraw 100))
followed by

(W 50)

50

Figure 3.6 shows the result of defining the make- wi t hdr aw
procedure in the global environment. This produces a
procedure object that contains a pointer to the global
environment. So far, this is no different from the examples
we have already seen, except that the body of the
procedure is itself a | anbda expression.

Figure 3.6: Result of defining make- wi t hdr awin the global
environment.

global
AoV

nake-withdraw:

paramatars: balanca
body: (lanbda {anount}
(if (>= balance anount)
{bagin {=zat! balance (- balance amount))
balanca)
"Inzufficient fundz"1)

The interesting part of the computation happens when we
apply the procedure nake-wi t hdrawto an argument:

(define WL (rmake-w t hdraw 100))

We begin, as usual, by setting up an environment E1
in which the formal parameter bal ance is bound to the
argument 100. Within this environment, we evaluate the
body of nake- wi t hdr aw, namely the | anbda expression. This
constructs a new procedure object, whose code is as
specified by the 1 anbda and whose environment is E1, the
environment in which the | anbda was evaluated to produce
the procedure. The resulting procedure object is the value
returned by the call to make-wi t hdraw. This is bound to w

in the global environment, since the defi ne itself is being
evaluated in the global environment. Figure 3.7 shows the
resulting environment structure.

Figure 3.7: Result of evaluating (defi ne WL (nmake-wi t hdr aw
100)).

nake-withdraw:

global
A Wi

T v

El —w balance: 100

paranatars: balance
body: ...

L

v

paramaters: amcunt
body: (if (»= balance anoumt)
fbagin fzat! balanca {- balance amount))
balzncal
"Inzufficient funds"))

Now we can analyze what happens when wt is applied to
an argument:

(W 50)

50

We begin by constructing a frame in which anmount, the
formal parameter of w, is bound to the argument 50.
The crucial point to observe is that this frame has as
its enclosing environment not the global environment, but
rather the environment E1, because this is the environment

that is specified by the wt procedure object. Within this new
environment, we evaluate the body of the procedure:

(i f (>= bal ance anmpunt)
(begin (set! balance (- bal ance anount))

bal ance)

"I nsufficient funds")

The resulting environment structure is shown in figure 3.8.
The expression being evaluated references both amount
and bal ance. Amount Will be found in the first frame in the
environment, while bal ance will be found by following the
enclosing-environment pointer to E1.

Figure 3.8: Environments created by applying the procedure object
WL.

gl obal nake-withdraw: . ..
ame Wi —|
T Here iz the balance
El — balanca: 100 that will be changed
3 1 by the zat! .
(?'-’(; amount: 53
paraneters: anount {if (»= balance amount)
body: ... {bagin

{=zet! balance
(- balance anount)
balanca)
"Inzufficient fund=")1)

When the set! is executed, the binding of bal ance in E1 is
changed. At the completion of the call to wt, bal ance is 50,
and the frame that contains bal ance is still pointed to by the
procedure object wt. The frame that binds anount (in which
we executed the code that changed bal ance) is no longer
relevant, since the procedure call that constructed it has
terminated, and there are no pointers to that frame from
other parts of the environment. The next time w is called,
this will build a new frame that binds amount and whose
enclosing environment is E1. We see that E1 serves as the

"place" that holds the local state variable for the procedure
object wt. Figure 3.9 shows the situation after the call to wa.

Figure 3.9: Environments after the call to WL..

gl obal naka-withdraw: ...

e Wi

T.

El—m balanca: 5Q

paransters: amount

body: ...
Observe what happens when we create a second
"withdraw" object by making another call to make- wi t hdr aw:

(define W2 (rmake-w thdraw 100))

This produces the environment structure of figure 3.10,
which shows that we is a procedure object, that is, a pair
with some code and an environment. The environment E2
for w2 was created by the call to make- wi t hdr aw. It contains
a frame with its own local binding for bal ance. On the other
hand, w. and w have the same code: the code specified by

the | ambda expression in the body of make- wi t hdr aw."> We
see here why w and w2 behave as independent objects.
Calls to w reference the state variable bal ance stored in
E1, whereas calls to v reference the bal ance stored in E2.
Thus, changes to the local state of one object do not affect
the other object.

Figure 3.10: Using (defi ne W2 (nmake-wi t hdraw 100)) to
create a second object.

naka-withdraw: ...

global
amy —=| W2:

Wi:

El —» balanca: 50 E2 —3» balanca: 100
[
Y
paranaterz: amount
body: ...

Exercise 3.10. In the nmake-wi t hdr aw procedure, the local
variable bal ance is created as a parameter of nake-

15 Whether W1 and W2 share the same physical code stored in the
computer, or whether they each keep a copy of the code, is a detail of the
implementation. For the interpreter we implement in chapter 4, the code
is in fact shared.

wi t hdraw. We could also create the local state variable
explicitly, using I et as follows:

(define (make-withdraw initial -anmount)

(let ((balance initial-anount))
(1l anbda (anount)
(if (>= bal ance anount)

(begin (set! balance (- bal ance anount))
bal ance)

"Insufficient funds"))))

Recall from section 1.3.2 that | et is simply syntactic sugar
for a procedure call:

(let ((<var> <exp>)) <
body>)

is interpreted as an alternate syntax for

((lambda (<var>) <body>) <
exp>)

Use the environment model to analyze this alternate
version of make-wi t hdraw, drawing figures like the ones
above to illustrate the interactions

(define WL (rmake-w t hdraw 100))
(W 50)

(define W2 (rmake-w t hdraw 100))

Show that the two versions of nake- wi t hdr aw create objects
with the same behavior. How do the environment structures
differ for the two versions?

3.2.4 Internal Definitions

Section 1.1.8 introduced the idea that procedures can have
internal definitions, thus leading to a block structure as in
the following procedure to compute square roots:
(define (sgrt x)
(define (good-enough? guess)
(< (abs (- (square guess) x)) 0.001))

(define (inprove guess)
(average guess (/ x guess)))

(define (sqrt-iter guess)
(i f (good-enough? guess)
guess
(sqrt-iter (inprove guess))))

(sqrt-iter 1.0))

Now we can use the environment model to see why these
internal definitions behave as desired. Figure 3.11 shows
the point in the evaluation of the expression (sqrt 2) where
the internal procedure good- enough? has been called for the
first time with guess equal to 1.

Figure 3.11: Sqrt procedure with internal definitions.

global

. —"Sqﬂi—|
v)

F
Eood-snough?:
F1—- inprova: ...

paranaters: x

body: (dafine good-emough? ...}
(dafine inprova ...} v
(dafins sqrt-iter ...}
(eqrt—-iter 1.7

sqrt-iter: ...

E2 —= pguazz: 1

paranatars: guazs
call to =qrt-iter body: (4 fabs ...}
.

EA -« guszz: 1

call to good-anough?

Observe the structure of the environment. Sqrt is a
symbol in the global environment that is bound to
a procedure object whose associated environment is
the global environment. When sqrt was called, a new
environment E1 was formed, subordinate to the global
environment, in which the parameter x is bound to 2. The
body of sqrt was then evaluated in E1. Since the first
expression in the body of sqrt is

(define (good-enough? guess)
(< (abs (- (square guess) x)) 0.001))

evaluating this expression defined the procedure good-
enough? in the environment E1. To be more precise,
the symbol good-enough? was added to the first frame
of E1, bound to a procedure object whose associated
environment is E1. Similarly, i nprove and sqrt-iter were
defined as procedures in E1. For conciseness, figure 3.11
shows only the procedure object for good- enough?.

After the local procedures were defined, the expression
(sqrt-iter 1.0) was evaluated, still in environment E1. So
the procedure object bound to sqrt-iter in E1 was called
with 1 as an argument. This created an environment E2
in which guess, the parameter of sqrt-iter, is bound to 1.
Sqrt-iter inturncalled good- enough? with the value of guess
(from E2) as the argument for good- enough?. This set up
another environment, E3, in which guess (the parameter of
good- enough?) is bound to 1. Although sqrt-iter and good-
enough? both have a parameter named guess, these are
two distinct local variables located in different frames. Also,
E2 and E3 both have E1 as their enclosing environment,
because the sqgrt-iter and good- enough? procedures both
have E1 as their environment part. One consequence of
this is that the symbol x that appears in the body of good-
enough? Will reference the binding of x that appears in E1,
namely the value of x with which the original sqrt procedure
was called. The environment model thus explains the two
key properties that make local procedure definitions a
useful technique for modularizing programs:

The names of the local procedures do not interfere with
names external to the enclosing procedure, because
the local procedure names will be bound in the frame
that the procedure creates when it is run, rather than
being bound in the global environment.

The local procedures can access the arguments of

the enclosing procedure, simply by using parameter
names as free variables. This is because the body of
the local procedure is evaluated in an environment that
is subordinate to the evaluation environment for the
enclosing procedure.

Exercise 3.11. In section 3.2.3 we saw how the
environment model described the behavior of procedures
with local state. Now we have seen how internal definitions
work. A typical message-passing procedure contains both
of these aspects. Consider the bank account procedure of
section 3.1.1:

(define (nake-account bal ance)

(define (wthdraw anpunt)
(if (>= bal ance anount)

(begin (set! balance (- bal ance anpunt))
bal ance)
"Insufficient funds"))

(define (deposit anount)
(set! bal ance (+ bal ance anount))

bal ance)
(define (dispatch m
(cond ((eq? m'w thdraw) wi thdraw)

((eq? m ' deposit) deposit)
(el se (error "Unknown request -- MAKE- ACCOUNT"

m)))
di spat ch)

Show the environment structure generated by the
sequence of interactions

(define acc (meke-account 50))

((acc 'deposit) 40)
90

((acc 'w thdraw) 60)
30

Where is the local state for acc kept? Suppose we define
another account

(define acc2 (nmake-account 100))

How are the local states for the two accounts kept distinct?
Which parts of the environment structure are shared
between acc and acc2?

3.3 Modeling with Mutable Data

Chapter 2 dealt with compound data as a means for
constructing computational objects that have several parts,
in order to model real-world objects that have several
aspects. In that chapter we introduced the discipline of
data abstraction, according to which data structures are
specified in terms of constructors, which create data
objects, and selectors, which access the parts of compound
data objects. But we now know that there is another aspect
of data that chapter 2 did not address. The desire to model
systems composed of objects that have changing state
leads us to the need to modify compound data objects,
as well as to construct and select from them. In order
to model compound objects with changing state, we will
design data abstractions to include, in addition to selectors
and constructors, operations called mutators, which modify
data objects. For instance, modeling a banking system
requires us to change account balances. Thus, a data
structure for representing bank accounts might admit an
operation

(set-bal ance! <account> <new- val ue>)

that changes the balance of the designated account to the
designated new value. Data objects for which mutators are
defined are known as mutable data objects.

Chapter 2 introduced pairs as a general-purpose "glue"
for synthesizing compound data. We begin this section by
defining basic mutators for pairs, so that pairs can serve
as building blocks for constructing mutable data objects.

These mutators greatly enhance the representational
power of pairs, enabling us to build data structures other
than the sequences and trees that we worked with in
section 2.2. We also present some examples of simulations
in which complex systems are modeled as collections of
objects with local state.

3.3.1 Mutable List Structure

The basic operations on pairs -- cons, car, and cdr -- can be
used to construct list structure and to select parts from list
structure, but they are incapable of modifying list structure.
The same is true of the list operations we have used so
far, such as append and i st, since these can be defined
in terms of cons, car, and cdr. To modify list structures we
need new operations.

Figure 3.12: Listsx:((a b) ¢ d) andy: (e f).

X —a ¥ -——:-T .——;-T

Figure 3.13: Effectof (set-car! x y) on the lists in figure 3.12.

x—a{ g [o}—={o[o}={2]”

Figure 3.14: Effectof (define z (cons y (cdr x))) onthe

lists in figure 3.12.

K

=

—= » =
=

—= &
E
¥y

Figure 3.15: Effectof (set-cdr! x y) on the lists in figure 3.12.

T o[=27

-
gl

e £

The primitive mutators for pairs are set-car! and set-cdr! .
Set-car! takes two arguments, the first of which must be
a pair. It modifies this pair, replacing the car pointer by a

pointer to the second argument of set - car! .*°
As an example, suppose that x is bound to the list ((a b)

¢ d) andy to the list (e f) as illustrated in figure 3.12.
Evaluating the expression (set-car! x y) modifies the pair

16 Set-car! and set-cdr! return implementation-dependent values. Like
set!, they should be used only for their effect.

to which x is bound, replacing its car by the value of y.
The result of the operation is shown in figure 3.13. The
structure x has been modified and would now be printed as
((e f) c d). The pairs representing the list (a b), identified
by the pointer that was replaced, are now detached from

the original structure."’

Compare figure 3.13 with figure 3.14, which illustrates the
result of executing (define z (cons y (cdr x))) with x and
y bound to the original lists of figure 3.12. The variable z is
now bound to a new pair created by the cons operation; the
list to which x is bound is unchanged.

The set-cdr! operation is similar to set-car!. The only
difference is that the cdr pointer of the pair, rather than the
car pointer, is replaced. The effect of executing (set - cdr!
x y) on the lists of figure 3.12 is shown in figure 3.15. Here
the cdr pointer of x has been replaced by the pointer to (e
f). Also, the list (¢ d), which used to be the cdr of x, is now
detached from the structure.

Cons builds new list structure by creating new pairs, while
set-car! and set-cdr! modify existing pairs. Indeed, we
could implement cons in terms of the two mutators, together
with a procedure get - new pai r, which returns a new pair
that is not part of any existing list structure. We obtain the

17 We see from this that mutation operations on lists can create "garbage”
that is not part of any accessible structure. We will see in section 5.3.2 that
Lisp memory-management systems include a garbage collector, which
identifies and recycles the memory space used by unneeded pairs.

new pair, set its car and cdr pointers to the designated
objects, and return the new pair as the result of the cons."™

(define (cons x y)
(let ((new (get-newpair)))
(set-car! new x)
(set-cdr! newy)

new))
Exercise 3.12. The following procedure for appending lists
was introduced in section 2.2.1:

(define (append x y)
(if (null? x)

y
(cons (car x) (append (cdr x) y))))

Append forms a new list by successively consing the
elements of x onto y. The procedure append! is similar
to append, but it is a mutator rather than a constructor. It
appends the lists by splicing them together, modifying the
final pair of x so that its cdr is now y. (It is an error to call
append! with an empty x.)
(define (append! x vy)

(set-cdr! (last-pair x) vy)

X)
Here | ast - pai r is a procedure that returns the last pair in
its argument:

18 Get-new-pair is one of the operations that must be implemented as
part of the memory management required by a Lisp implementation. We
will discuss this in section 5.3.1.

(define (last-pair x)
(if (null? (cdr x))

X

(last-pair (cdr x))))
Consider the interaction
(define x (list "a 'b))
(definey (list 'c 'd))
(define z (append x y))
z
(abcd
(cdr x)
<r esponse>
(define w (append! x y))
W
(abcd
(cdr x)
<r esponse>

What are the missing <response>s? Draw box-and-pointer
diagrams to explain your answer.

Exercise 3.13. Consider the following nake-cycle
procedure, which uses the I ast - pai r procedure defined in
exercise 3.12:

(define (nmake-cycle x)
(set-cdr! (last-pair x) x)
X)

Draw a box-and-pointer diagram that shows the structure
z created by

(define z (make-cycle (list "a'b 'c)))

What happens if we try to compute (1 ast-pair z)?

Exercise 3.14. The following procedure is quite useful,
although obscure:
(define (nystery x)

(define (loop x vy)
(if (null? x)

y
(let ((temp (cdr x)))

(set-cdr! x vy)
(loop tenp x))))

(loop x " ()))

Loop uses the "temporary" variable tenp to hold the old
value of the cdr of x, since the set-cdr! on the next line
destroys the cdr. Explain what nystery does in general.
Suppose v is defined by (define v (list 'a 'b 'c 'd)).
Draw the box-and-pointer diagram that represents the list
to which v is bound. Suppose that we now evaluate (defi ne
w (nystery v)).Draw box-and-pointer diagrams that show
the structures v and wafter evaluating this expression. What
would be printed as the values of v and w ?

Sharing and identity

We mentioned in section 3.1.3 the theoretical issues
of "sameness" and "change" raised by the introduction
of assignment. These issues arise in practice when
individual pairs are shared among different data objects.
For example, consider the structure formed by

(define x (list "a 'b))

(define z1 (cons x X))

As shown in figure 3.16, z1 is a pair whose car and cdr both
point to the same pair x. This sharing of x by the car and cdr
of z1 is a consequence of the straightforward way in which
cons isimplemented. In general, using cons to construct lists
will result in an interlinked structure of pairs in which many
individual pairs are shared by many different structures.

Figure 3.16: The list z1 formed by (cons x Xx).

=] ———3m v T

'

-3

o ==

Figure 3.17: Thelistz2 formed by (cons (list "a 'b) (list

‘a'b)).
ZE—3 g -——:-} /I

3= g .
3 o e

— = ¥ |

In contrast to figure 3.16, figure 3.17 shows the structure
created by

(define z2 (cons (list "a 'b) (list "a 'b)))

In this structure, the pairs in the two (a b) lists are distinct,
although the actual symbols are shared.™

When thought of as a list, z1 and z2 both represent "the
same" list, ((a b) a b). In general, sharing is completely
undetectable if we operate on lists using only cons, car, and
cdr . However, if we allow mutators on list structure, sharing
becomes significant. As an example of the difference that

19 The two pairs are distinct because each call to cons returns a new
pair. The symbols are shared; in Scheme there is a unique symbol with
any given name. Since Scheme provides no way to mutate a symbol, this
sharing is undetectable. Note also that the sharing is what enables us to
compare symbols using eq?, which simply checks equality of pointers.

sharing can make, consider the following procedure, which
modifies the car of the structure to which it is applied:
(define (set-to-wow x)

(set-car! (car x) 'wow)

X)
Even though z1 and z2 are "the same" structure, applying
set-to-wow to them yields different results. With z1,
altering the car also changes the cdr, because in z1 the car
and the cdr are the same pair. With z2, the car and cdr are
distinct, so set -t o-wow! modifies only the car:

z1
((a b) ab)

(set-to-wow z1)
((wow b) wow b)

z2
((a b) ab)

(set-to-wow z2)

((wow b) a b)

One way to detect sharing in list structures is to use the
predicate eq?, which we introduced in section 2.3.1 as a
way to test whether two symbols are equal. More generally,
(eq? x y) tests whether x and y are the same object (that
is, whether x and y are equal as pointers). Thus, with z1
and z2 as defined in figures 3.16 and 3.17, (eq? (car z1)
(cdr z1)) istrue and (eq? (car z2) (cdr z2)) is false.

As will be seen in the following sections, we can exploit
sharing to greatly extend the repertoire of data structures
that can be represented by pairs. On the other hand,
sharing can also be dangerous, since modifications made
to structures will also affect other structures that happen to
share the modified parts. The mutation operations set - car !
and set - cdr! should be used with care; unless we have a
good understanding of how our data objects are shared,

mutation can have unanticipated results.”

Exercise 3.15. Draw box-and-pointer diagrams to explain
the effect of set -t 0o-wow 0N the structures z1 and z2 above.

Exercise 3.16. Ben Bitdiddle decides to write a procedure
to count the number of pairs in any list structure. "It's easy,"
he reasons. "The number of pairs in any structure is the
number in the car plus the number in the cdr plus one

20 The subtleties of dealing with sharing of mutable data objects reflect
the underlying issues of "sameness" and "change" that were raised in
section 3.1.3. We mentioned there that admitting change to our language
requires that a compound object must have an "identity" that is something
different from the pieces from which it is composed. In Lisp, we consider
this "identity" to be the quality that is tested by eq?, i.e., by equality of
pointers. Since in most Lisp implementations a pointer is essentially a
memory address, we are "solving the problem" of defining the identity of
objects by stipulating that a data object "itself" is the information stored in
some particular set of memory locations in the computer. This suffices for
simple Lisp programs, but is hardly a general way to resolve the issue of
"sameness" in computational models.

more to count the current pair." So Ben writes the following
procedure:
(define (count-pairs x)
(if (not (pair? x))
0
(+ (count-pairs (car x))

(count-pairs (cdr x))

)N

Show that this procedure is not correct. In particular,
draw box-and-pointer diagrams representing list structures
made up of exactly three pairs for which Ben's procedure
would return 3; return 4; return 7; never return at all.

Exercise 3.17. Devise a correct version of the count-
pai r s procedure of exercise 3.16 that returns the number of
distinct pairs in any structure. (Hint: Traverse the structure,
maintaining an auxiliary data structure that is used to keep
track of which pairs have already been counted.)

Exercise 3.18. Write a procedure that examines a
list and determines whether it contains a cycle, that is,
whether a program that tried to find the end of the list
by taking successive cdrs would go into an infinite loop.
Exercise 3.13 constructed such lists.

Exercise 3.19. Redo exercise 3.18 using an algorithm that
takes only a constant amount of space. (This requires a
very clever idea.)

Mutation is just assignment

When we introduced compound data, we observed in
section 2.1.3 that pairs can be represented purely in terms
of procedures:
(define (cons x vy)
(define (dispatch m
(cond ((eq? m'car) x)

((eg? m'cdr) vy)
(el se (error "Undefined operation -- CONS" m)))

di spat ch)
(define (car z) (z 'car))
(define (cdr z) (z 'cdr))

The same observation is true for mutable data. We can
implement mutable data objects as procedures using
assignment and local state. For instance, we can extend
the above pair implementation to handle set - car! and set -
cdr! in @ manner analogous to the way we implemented
bank accounts using nake- account in section 3.1.1:

(define (cons x y)
(define (set-x! v) (set! x v))

(define (set-y! v) (set! y v))

(define (dispatch nm
(cond ((eq? m'car) x)

((eq? m'cdr) vy)

((eq? m'set-car!) set-x!)
((eq? m'set-cdr!) set-y!)
(el se (error "Undefined operation -- CONS" m)))

di spat ch)
(define (car z) (z 'car))
(define (cdr z) (z 'cdr))
(define (set-car! z newval ue)
((z 'set-car!) newval ue)
z)
(define (set-cdr! z newval ue)
((z "set-cdr!) newval ue)
2)

Assignment is all that is needed, theoretically, to account

for the behavior of mutable data. As soon as we admit
set! to our language, we raise all the issues, not only of

assignment, but of mutable data in general.”*

Exercise 3.20. Draw environment diagrams to illustrate
the evaluation of the sequence of expressions

(define x (cons 1 2))
(define z (cons x x))
(set-car! (cdr z) 17)
(car x)

21 On the other hand, from the viewpoint of implementation, assignment
requires us to modify the environment, which is itself a mutable data
structure. Thus, assignment and mutation are equipotent: Each can be
implemented in terms of the other.

using the procedural implementation of pairs given above.
(Compare exercise 3.11.)

3.3.2 Representing Queues

The mutators set - car! and set-cdr! enable us to use pairs
to construct data structures that cannot be built with cons,
car, and cdr alone. This section shows how to use pairs to
represent a data structure called a queue. Section 3.3.3 will
show how to represent data structures called tables.

A queue is a sequence in which items are inserted at one
end (called the rear of the queue) and deleted from the
other end (the front). Figure 3.18 shows an initially empty
queue in which the items a and b are inserted. Then a is
removed, ¢ and d are inserted, and b is removed. Because
items are always removed in the order in which they are
inserted, a queue is sometimes called a FIFO (first in, first
out) buffer.

Figure 3.18: Queue operations.

Operation Resulting Queue (define g (make-queue))
(insert-queue! g 'a) a (insert-queue! g 'b) a b (delete-
queue! g) b (insert-queue! g 'c) b c (insert-queue!l q'd) b c
d (delete-queue! g) cd

In terms of data abstraction, we can regard a queue as
defined by the following set of operations:

a constructor: (meke- queue) returns an empty queue (a
gueue containing no items).

two selectors: (enpty- queue? <queue>) tests if the
gueue is empty. (front - queue <queue>) returns the
object at the front of the queue, signaling an error if the
gueue is empty; it does not modify the queue.

two mutators: (i nsert-queue! <queue> <itenp) iNserts
the item at the rear of the queue and returns the
modified queue as its value. (del et e- queue! <queue>)
removes the item at the front of the queue and returns
the modified queue as its value, signaling an error if the
gueue is empty before the deletion.

Because a queue is a sequence of items, we could certainly
represent it as an ordinary list; the front of the queue would
be the car of the list, inserting an item in the queue would
amount to appending a new element at the end of the
list, and deleting an item from the queue would just be
taking the cdr of the list. However, this representation is
inefficient, because in order to insert an item we must scan
the list until we reach the end. Since the only method we
have for scanning a list is by successive cdr operations,

this scanning requires El(n) steps for a list of n items. A
simple modification to the list representation overcomes
this disadvantage by allowing the queue operations to be

implemented so that they require El(l) steps; that is, so that

the number of steps needed is independent of the length
of the queue.

The difficulty with the list representation arises from the
need to scan to find the end of the list. The reason
we need to scan is that, although the standard way of
representing a list as a chain of pairs readily provides us
with a pointer to the beginning of the list, it gives us no easily
accessible pointer to the end. The maodification that avoids
the drawback is to represent the queue as a list, together
with an additional pointer that indicates the final pair in the
list. That way, when we go to insert an item, we can consult
the rear pointer and so avoid scanning the list.

A queue is represented, then, as a pair of pointers, front -
ptr and rear-ptr, which indicate, respectively, the first and
last pairs in an ordinary list. Since we would like the queue
to be an identifiable object, we can use cons to combine the
two pointers. Thus, the queue itself will be the cons of the
two pointers. Figure 3.19 illustrates this representation.

Figure 3.19: Implementation of a queue as a list with front and rear
pointers.

qg——~ % | =

front—ptr cedr—phE

b '
\ ¥ ¥

a b =]

To define the queue operations we use the following
procedures, which enable us to select and to modify the
front and rear pointers of a queue:

(define (front-ptr queue) (car queue))
(define (rear-ptr queue) (cdr queue))
(define (set-front-ptr! queue itenm) (set-car! queue it

(define (set-rear-ptr! queue item (set-cdr! queue ite

Now we can implement the actual queue operations. We
will consider a queue to be empty if its front pointer is the
empty list:

(define (enpty-queue? queue) (null? (front-ptr queue)))
The make- queue constructor returns, as an initially empty
queue, a pair whose car and cdr are both the empty list:

(define (make-queue) (cons '() '()))

To select the item at the front of the queue, we return the
car of the pair indicated by the front pointer:
(define (front-queue queue)
(if (enpty-queue? queue)
(error "FRONT called with an enpty queue" queue)

(car (front-ptr queue))))

To insert an item in a queue, we follow the method whose
result is indicated in figure 3.20. We first create a new pair
whose car is the item to be inserted and whose cdr is the
empty list. If the queue was initially empty, we set the front
and rear pointers of the queue to this new pair. Otherwise,
we modify the final pair in the queue to point to the new
pair, and also set the rear pointer to the new pair.

Figure 3.20: Result of using (i nsert-queue! q 'd) onthe
queue of figure 3.19.

q *| =

front—pte rear—ptr

A e KIS K

(define (insert-queue! queue item

(let ((newpair (cons item'())))

(cond ((enpty-queue? queue)
(set-front-ptr! queue new pair)

(set-rear-ptr! queue new-pair)
queue)

(el se

(set-cdr! (rear-ptr queue) newpair)
(set-rear-ptr! queue new-pair)

queue))))

To delete the item at the front of the queue, we merely
modify the front pointer so that it now points at the second
item in the queue, which can be found by following the cdr

pointer of the first item (see figure 3.21):*

22 If the first item is the final item in the queue, the front pointer will be
the empty list after the deletion, which will mark the queue as empty; we
needn't worry about updating the rear pointer, which will still point to the
deleted item, because empty-queue? looks only at the front pointer.

Figure 3.21: Result of using (del et e- queue! q) on the queue of
figure 3.20.

q * |

front—ptre cear—pte

I%I
(define (del ete-queue! queue)

(cond ((enpty-queue? queue)
(error "DELETE! called with an enpty queue"

el ely

(el se
(set-front-ptr! queue (cdr (front-ptr queue)))

queue)))

Exercise 3.21. Ben Bitdiddle decides to test the
queue implementation described above. He types in the
procedures to the Lisp interpreter and proceeds to try them
out:

(define gl (make-queue))
(i nsert-queue! ql 'a)
((a) a)

(i nsert-queue! gl 'b)
((a b) b)

(del et e- queue! ql)

((b) b)

(del et e- queue! ql)

"It's all wrong!" he complains. "The interpreter's response
shows that the last item is inserted into the queue twice.
And when | delete both items, the second b is still there,
so the queue isn't empty, even though it's supposed to
be." Eva Lu Ator suggests that Ben has misunderstood
what is happening. "It's not that the items are going into
the queue twice," she explains. "It's just that the standard
Lisp printer doesn't know how to make sense of the
queue representation. If you want to see the queue printed
correctly, you'll have to define your own print procedure for
queues." Explain what Eva Lu is talking about. In particular,
show why Ben's examples produce the printed results that
they do. Define a procedure pri nt - queue that takes a queue
as input and prints the sequence of items in the queue.

Exercise 3.22. Instead of representing a queue as a pair
of pointers, we can build a queue as a procedure with
local state. The local state will consist of pointers to the
beginning and the end of an ordinary list. Thus, the nake-
queue procedure will have the form
(define (nake-queue)
(let ((front-ptr
oer) (rear-ptr...)) <definitions of internal procedures>
(define (dispatch m) ...) dispatch))

Complete the definition of nmke-queue and provide
implementations of the queue operations using this
representation.

Exercise 3.23. A deque ("double-ended queue") is a
sequence in which items can be inserted and deleted at
either the front or the rear. Operations on deques are
the constructor nake-deque, the predicate enpty-deque?,
selectors f ront - deque and r ear - deque, and mutators f r ont -
i nsert-deque!, rear-insert-deque!, front-del ete-deque!,
and rear - del et e- deque! . Show how to represent deques

using pairs, and give implementations of the operations.”’
All operations should be accomplished in El(l) steps.

3.3.3 Representing Tables

When we studied various ways of representing sets in
chapter 2, we mentioned in section 2.3.3 the task of
maintaining a table of records indexed by identifying keys.
In the implementation of data-directed programming in
section 2.4.3, we made extensive use of two-dimensional
tables, in which information is stored and retrieved using
two keys. Here we see how to build tables as mutable list
structures.

We first consider a one-dimensional table, in which each
value is stored under a single key. We implement the table
as a list of records, each of which is implemented as a pair
consisting of a key and the associated value. The records
are glued together to form a list by pairs whose car s point
to successive records. These gluing pairs are called the

23 Be careful not to make the interpreter try to print a structure that
contains cycles. (See exercise 3.13.)

backbone of the table. In order to have a place that we can
change when we add a new record to the table, we build the
table as a headed list. A headed list has a special backbone
pair at the beginning, which holds a dummy "record" -- in
this case the arbitrarily chosen symbol *t abl e*. Figure 3.22
shows the box-and-pointer diagram for the table

a: 1
b: 2
c. 3

Figure 3.22: A table represented as a headed list.

tTle
*tablew . q__] ‘ 9 1
N L Y
a 1 b z z =

To extract information from a table we use the 1 ookup
procedure, which takes a key as argument and returns
the associated value (or false if there is no value stored
under that key). Lookup is defined in terms of the assoc
operation, which expects a key and a list of records as
arguments. Note that assoc never sees the dummy record.

Assoc returns the record that has the given key as its car .**
Lookup then checks to see that the resulting record returned
by assoc is not false, and returns the value (the cdr) of the
record.

(define (| ookup key table)
(let ((record (assoc key (cdr table))))

(if record
(cdr record)

false)))
(define (assoc key records)
(cond ((null? records) false)
((equal ? key (caar records)) (car records))

(el se (assoc key (cdr records)))))

To insert a value in a table under a specified key, we first
use assoc to see if there is already a record in the table with
this key. If not, we form a new record by consing the key
with the value, and insert this at the head of the table's list of
records, after the dummy record. If there already is a record
with this key, we set the cdr of this record to the designated
new value. The header of the table provides us with a fixed

location to modify in order to insert the new record.”

24 Because assoc uses equal?, it can recognize keys that are symbols,
numbers, or list structure.

25 Thus, the first backbone pair is the object that represents the table
"itself"; that is, a pointer to the table is a pointer to this pair. This same
backbone pair always starts the table. If we did not arrange things in this

(define (insert! key value table)
(let ((record (assoc key (cdr table))))

(if record
(set-cdr! record val ue)

(set-cdr! table
(cons (cons key value) (cdr table)))))
' ok)
To construct a new table, we simply create a list containing
the symbol *t abl e*:

(define (make-table)
(list '"*table*))

Two-dimensional tables

In a two-dimensional table, each value is indexed by two
keys. We can construct such a table as a one-dimensional
table in which each key identifies a subtable. Figure 3.23
shows the box-and-pointer diagram for the table

mat h:
+: 43
-: 45
*: 42
letters:
a 97

way, insert! would have to return a new value for the start of the table
when it added a new record.

b: 98

which has two subtables. (The subtables don't need a
special header symbol, since the key that identifies the
subtable serves this purpose.)

Figure 3.23: A two-dimensional table.

table

[T
== (o Te=1]

e
E;EE

|i ‘I i‘ l t lll/l

When we look up an item, we use the first key to identify the
correct subtable. Then we use the second key to identify
the record within the subtable.

(define (lookup key-1 key-2 table)
(let ((subtable (assoc key-1 (cdr table))))

(if subtable
(let ((record (assoc key-2 (cdr subtable))))

(if record
(cdr record)
fal se))

false)))

To insert a new item under a pair of keys, we use assoc
to see if there is a subtable stored under the first key. If
not, we build a new subtable containing the single record
(key- 2, val ue) and insert it into the table under the first key.
If a subtable already exists for the first key, we insert the
new record into this subtable, using the insertion method
for one-dimensional tables described above:

(define (insert! key-1 key-2 value table)
(let ((subtable (assoc key-1 (cdr table))))

(if subtable
(let ((record (assoc key-2 (cdr subtable))))

(if record

(set-cdr! record val ue)
(set-cdr! subtable
(cons (cons key-2 val ue)
(cdr subtable)))))
(set-cdr! table
(cons (list key-1
(cons key-2 val ue))
(cdr table)))))
' ok)
Creating local tables

The | ookup and i nsert! operations defined above take the
table as an argument. This enables us to use programs
that access more than one table. Another way to deal with
multiple tables is to have separate | ookup and insert!
procedures for each table. We can do this by representing
a table procedurally, as an object that maintains an internal
table as part of its local state. When sent an appropriate
message, this "table object" supplies the procedure with
which to operate on the internal table. Here is a generator
for two-dimensional tables represented in this fashion:

(define (nmake-table)
(let ((local-table (list '*table*)))

(define (lookup key-1 key-2)
(let ((subtable (assoc key-1 (cdr local-table))))
(if subtable
(let ((record (assoc key-2 (cdr subtable))))
(if record
(cdr record)
fal se))
false)))
(define (insert! key-1 key-2 val ue)
(let ((subtable (assoc key-1 (cdr local-table))))
(if subtable
(let ((record (assoc key-2 (cdr subtable))))
(if record
(set-cdr! record val ue)
(set-cdr! subtable
(cons (cons key-2 val ue)
(cdr subtable)))))

(set-cdr! local-table

(cons (list key-1
(cons key-2 val ue))
(cdr local-table)))))
* ok)

(define (dispatch m
(cond ((eq? m' | ookup-proc) | ookup)

((eq? m'insert-proc!) insert!)
(el se (error "Unknown operation -- TABLE' m))))

di spat ch))

Using nmke-table, we could implement the get and
put operations used in section 2.4.3 for data-directed
programming, as follows:

(define operation-table (make-table))
(define get (operation-table 'l ookup-proc))

(define put (operation-table 'insert-proc!))

Get takes as arguments two keys, and put takes as
arguments two keys and a value. Both operations access
the same local table, which is encapsulated within the
object created by the call to nmake-t abl e.

Exercise 3.24. In the table implementations above, the
keys are tested for equality using equal ? (called by assoc).

This is not always the appropriate test. For instance, we
might have a table with numeric keys in which we don't
need an exact match to the number we're looking up, but
only a number within some tolerance of it. Design a table
constructor make-t abl e that takes as an argument a sane-
key? procedure that will be used to test "equality" of keys.
Make- t abl e should return a di spat ch procedure that can be
used to access appropriate | ookup andi nsert! procedures
for a local table.

Exercise 3.25. Generalizing one- and two-dimensional
tables, show how to implement a table in which values
are stored under an arbitrary number of keys and different
values may be stored under different numbers of keys. The
| ookup and i nsert! procedures should take as input a list
of keys used to access the table.

Exercise 3.26. To search a table as implemented
above, one needs to scan through the list of records.
This is basically the unordered list representation of
section 2.3.3. For large tables, it may be more efficient
to structure the table in a different manner. Describe a
table implementation where the (key, value) records are
organized using a binary tree, assuming that keys can be
ordered in some way (e.g., numerically or alphabetically).
(Compare exercise 2.66 of chapter 2.)

Exercise 3.27. Memoization (also called tabulation) is a
technique that enables a procedure to record, in a local
table, values that have previously been computed. This

technique can make a vast difference in the performance
of a program. A memoized procedure maintains a table in
which values of previous calls are stored using as keys the
arguments that produced the values. When the memoized
procedure is asked to compute a value, it first checks the
table to see if the value is already there and, if so, just
returns that value. Otherwise, it computes the new value in
the ordinary way and stores this in the table. As an example
of memoization, recall from section 1.2.2 the exponential
process for computing Fibonacci numbers:
(define (fib n)

(cond ((=n 0) 0)

((=n1) 1)

(else (+ (fib (- n 1))
(fib (- n 2))))))

The memoized version of the same procedure is

(define neno-fib
(menoi ze (| anbda (n)
(cond ((=n 0) 0)

((=n1) 1)
(else (+ (menmo-fib (- n 1))
(memo-fib (- n 2))))))))

where the memoizer is defined as

(define (nenoize f)
(let ((table (rmake-table)))

(lambda (x)
(let ((previously-conmputed-result (lookup x tab

(or previously-conputed-result
(let ((result (f x)))

(insert! x result table)

result))))))

Draw an environment diagram to analyze the computation
of (remo-fib 3). Explain why neno-fi b computes the nth
Fibonacci number in a number of steps proportional to n.
Would the scheme still work if we had simply defined neno-
fibto be (menoize fib)?

3.3.4 A Simulator for Digital Circuits

Designing complex digital systems, such as computers,
is an important engineering activity. Digital systems are
constructed by interconnecting simple elements. Although
the behavior of these individual elements is simple,
networks of them can have very complex behavior.
Computer simulation of proposed circuit designs is an
important tool used by digital systems engineers. In this
section we design a system for performing digital logic
simulations. This system typifies a kind of program called
an event-driven simulation, in which actions ("events")
trigger further events that happen at a later time, which in
turn trigger more events, and so so.

Our computational model of a circuit will be composed
of objects that correspond to the elementary components
from which the circuit is constructed. There are wires, which
carry digital signals. A digital signal may at any moment
have only one of two possible values, 0 and 1. There are
also various types of digital function boxes, which connect
wires carrying input signals to other output wires. Such
boxes produce output signals computed from their input
signals. The output signal is delayed by a time that depends
on the type of the function box. For example, an inverter is a
primitive function box that inverts its input. If the input signal
to an inverter changes to 0, then one inverter-delay later
the inverter will change its output signal to 1. If the input
signal to an inverter changes to 1, then one inverter-delay
later the inverter will change its output signal to 0. We draw
an inverter symbolically as in figure 3.24. An and-gate, also
shown in figure 3.24, is a primitive function box with two
inputs and one output. It drives its output signal to a value
that is the logical and of the inputs. That is, if both of its input
signals become 1, then one and-gate-delay time later the
and-gate will force its output signal to be 1; otherwise the
output will be 0. An or-gate is a similar two-input primitive
function box that drives its output signal to a value that is
the logical or of the inputs. That is, the output will become 1
if at least one of the input signals is 1; otherwise the output
will become 0.

Figure 3.24: Primitive functions in the digital logic simulator.

e D e P

Inverter And—gate or—gate

We can connect primitive functions together to construct
more complex functions. To accomplish this we wire the
outputs of some function boxes to the inputs of other
function boxes. For example, the half-adder circuit shown
in figure 3.25 consists of an or-gate, two and-gates, and
an inverter. It takes two input signals, A and B, and has
two output signals, S and C. S will become 1 whenever
precisely one of A and B is 1, and C will become 1
whenever A and B are both 1. We can see from the figure
that, because of the delays involved, the outputs may be
generated at different times. Many of the difficulties in the
design of digital circuits arise from this fact.

Figure 3.25: A half-adder circuit.

A 4)1373—— 2

K

We will now build a program for modeling the digital
logic circuits we wish to study. The program will construct
computational objects modeling the wires, which will "hold"
the signals. Function boxes will be modeled by procedures
that enforce the correct relationships among the signals.

One basic element of our simulation will be a procedure
make-wi re, Which constructs wires. For example, we can
construct six wires as follows:

(define a (make-wire))

(define b (make-wire))

(define c (make-wire))

(define d (make-wire))

(define e (make-wire))

(define s (make-wire))

We attach a function box to a set of wires by calling a
procedure that constructs that kind of box. The arguments
to the constructor procedure are the wires to be attached
to the box. For example, given that we can construct and-
gates, or-gates, and inverters, we can wire together the
half-adder shown in figure 3.25:

(or-gate a b d)
ok

(and-gate a b c)
ok

(inverter c e)
ok

(and-gate d e s)
ok

Better yet, we can explicitly name this operation by defining

a procedure hal f - adder that constructs this circuit, given
the four external wires to be attached to the half-adder:

(define (half-adder a b s c)
(let ((d (make-wire)) (e (make-wire)))

(or-gate a b d)

(and-gate a b c¢)

(inverter c e)

(and-gate d e s)

' ok))
The advantage of making this definition is that we can
use hal f - adder itself as a building block in creating more
complex circuits. Figure 3.26, for example, shows a full-

adder composed of two half-adders and an or-gate.”® We
can construct a full-adder as follows:

(define (full-adder a b c-in sumc-out)

(let ((s (make-wire))
(cl (nmake-wire))

26 A full-adder is a basic circuit element used in adding two binary
numbers. Here A and B are the bits at corresponding positions in the
two numbers to be added, and Cin is the carry bit from the addition one
place to the right. The circuit generates SUM, which is the sum bit in the
corresponding position, and Cout, which is the carry bit to be propagated
to the left.

(c2 (nmake-wire)))
(hal f-adder b c-in s c1)
(hal f-adder a s sum c2)

(or-gate cl c2 c-out)
" ok))

Having defined f ul | - adder as a procedure, we can now use
it as a building block for creating still more complex circuits.
(For example, see exercise 3.30.)

Figure 3.26: A full-adder circuit.

B hE.lf L Ju). |

adder
B half [ﬁ:-%)—— Cont

-y adder

in

In essence, our simulator provides us with the tools to
construct a language of circuits. If we adopt the general
perspective on languages with which we approached
the study of Lisp in section 1.1, we can say that the
primitive function boxes form the primitive elements of the
language, that wiring boxes together provides a means
of combination, and that specifying wiring patterns as
procedures serves as a means of abstraction.

Primitive function boxes

The primitive function boxes implement the "forces" by
which a change in the signal on one wire influences the
signals on other wires. To build function boxes, we use the
following operations on wires:

(get-signal <wire>) returns the current value of the
signal on the wire.

(set-signal! <wire> <new val ue>) changes the value
of the signal on the wire to the new value.

(add-action! <w re> <procedure of no argunents>)
asserts that the designated procedure should be run
whenever the signal on the wire changes value. Such
procedures are the vehicles by which changes in the
signal value on the wire are communicated to other
wires.

In addition, we will make use of a procedure after - del ay
that takes a time delay and a procedure to be run and
executes the given procedure after the given delay.

Using these procedures, we can define the primitive digital
logic functions. To connect an input to an output through
an inverter, we use add- acti on! to associate with the input
wire a procedure that will be run whenever the signal on
the input wire changes value. The procedure computes
the 1 ogi cal -not of the input signal, and then, after one
i nverter - del ay, sets the output signal to be this new value:

(define (inverter input output)
(define (invert-input)
(let ((newvalue (logical-not (get-signal input))))

(after-delay inverter-del ay
(lambda ()
(set-signal! output newvalue)))))

(add-action! input invert-input)
' ok)
(define (logical-not s)
(cond ((=s 0) 1)
((=s1) 0

(else (error "lInvalid signal" s))))

An and-gate is a little more complex. The action procedure
must be run if either of the inputs to the gate changes. It
computes the 1 ogi cal -and (using a procedure analogous
to 1 ogi cal - not) of the values of the signals on the input
wires and sets up a change to the new value to occur on
the output wire after o